首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of tobacco plants as a novel expression system for the production of human homotrimeric collagen I is presented in this report. Constructs were engineered from cDNA encoding the human proalpha1(I) chain to generate transgenic tobacco plants expressing collagen I. The recombinant proalpha1(I) chains were expressed as disulfide-bonded trimers and were shown to fold into a stable homotrimeric triple helix. Moreover, the recombinant procollagen was subsequently processed to collagen as it occurs in animals. Large amounts of recombinant collagen were purified from field grown plant material. The data suggest that plants are a valuable alternative for the recombinant production of collagen for various medical and scientific purposes.  相似文献   

2.
Hsp47 is a heat stress protein that interacts with procollagen in the lumen of the endoplasmic reticulum, which is vital for collagen elaboration and embryonic viability. The precise actions of Hsp47 remain unclear, however. To evaluate the effects of Hsp47 on collagen production we infected human vascular smooth muscle cells (SMCs) with a retrovirus containing Hsp47 cDNA. SMCs overexpressing Hsp47 secreted type I procollagen faster than SMCs transduced with empty vector, yielding a greater accumulation of pro alpha1(I) collagen in the extracellular milieu. Interestingly, the amount of intracellular pro alpha1(I) collagen was also increased. This was associated with an unexpected increase in the rate of pro alpha1(I) collagen chain synthesis and 2.5-fold increase in pro alpha1(I) collagen mRNA expression, without a change in fibronectin expression. This amplification of procollagen expression, synthesis, and secretion by Hsp47 imparted SMCs with an enhanced capacity to elaborate a fibrillar collagen network. The effects of Hsp47 were qualitatively distinct from, and independent of, those of ascorbate and the combination of both factors yielded an even more intricate fibril network. Given the in vitro impact of altered Hsp47 expression on procollagen production, we sought evidence for interindividual variability in Hsp47 expression and identified a common, single nucleotide polymorphism in the Hsp47 gene promoter among African Americans that significantly reduced promoter activity. Together, these findings indicate a novel means by which type I collagen production is regulated by the endoplasmic reticulum constituent, Hsp47, and suggest a potential basis for inherent differences in collagen production within the population.  相似文献   

3.
Tasab M  Batten MR  Bulleid NJ 《The EMBO journal》2000,19(10):2204-2211
Hsp47 is a heat-shock protein that interacts transiently with procollagen during its folding, assembly and transport from the endoplasmic reticulum (ER) of mammalian cells. It has been suggested to carry out a diverse range of functions, such as acting as a molecular chaperone facilitating the folding and assembly of procollagen molecules, retaining unfolded molecules within the ER, and assisting the transport of correctly folded molecules from the ER to the Golgi apparatus. Here we define the substrate recognition of Hsp47, demonstrating that it interacts preferentially with triple-helical procollagen molecules. The association of Hsp47 with procollagen coincides with the formation of a collagen triple helix. This demonstrates that Hsp47's role in procollagen folding and assembly is distinct from that of prolyl 4-hydroxylase. These results indicate that Hsp47 acts as a novel molecular chaperone, potentially stabilizing the correctly folded collagen helix from heat denaturation before its transport from the ER.  相似文献   

4.
Expression of an engineered form of recombinant procollagen in mouse milk   总被引:8,自引:0,他引:8  
We have examined the suitability of the mouse mammary gland for expression of novel recombinant procollagens that can be used for biomedical applications. We generated transgenic mouse lines containing cDNA constructs encoding recombinant procollagen, along with the alpha and beta subunits of prolyl 4-hydroxylase, an enzyme that modifies the collagen into a form that is stable at body temperature. The lines expressed relatively high levels (50-200 micrograms/ml) of recombinant procollagen in milk. As engineered, the recombinant procollagen was shortened and consisted of a pro alpha 2(I) chain capable of forming a triple-helical homotrimer not normally found in nature. Analysis of the product demonstrated that (1) the pro alpha chains formed disulphide-linked trimers, (2) the trimers contained a thermostable triple-helical domain, (3) the N-propeptides were aligned correctly, and (4) the expressed procollagen was not proteolytically processed to collagen in milk.  相似文献   

5.
Interaction with the extracellular matrix is important for the proliferation and differentiation of cells during development. A specialized extracellular matrix, basement membrane, is built around a scaffold of procollagen IV molecules. We report the sequence of a 2.5-kilobase cDNA which contains the carboxyl end of a Drosophila melanogaster procollagen IV. The amino acid sequence of the carboxyl-terminal domain, which forms an essential intermolecular linkage between procollagen IV molecules, is 59% identical in Drosophila and vertebrate procollagens IV, and an additional 17% of residues are conservatively substituted. This implies that the nature of the linkage is also conserved. We suggest that intermolecular junctions through procollagen IV carboxyl domains are fundamental elements of the molecular architecture of Metazoan basement membranes and have been conserved during evolution. The isolation and identification of this basement membrane collagen gene of Drosophila will help in deducing the function of procollagen IV in basement membranes.  相似文献   

6.
A complementary DNA (cDNA) clone was constructed for chick pro alpha 2(I) collagen mRNA. This and previously constructed cDNA clones for chick and human pro alpha 1(I) collagen mRNAs were used to measure levels of type I procollagen messenger RNAs in two experimental models: viscose cellulose sponge-induced experimental granulation tissue and silica-induced experimental lung fibrosis in rats. Both Northern RNA blot and RNA dot hybridizations were used to quantitate procollagen mRNAs during formation of granulation tissue. The period of rapid collagen synthesis was characterized by high levels of procollagen mRNAs, which were reduced when collagen production returned to a low basal level. The rate of collagen synthesis and the levels of procollagen mRNAs during the period of rapid reduction in collagen production did not, however, parallel with each other. This suggests that translational control mechanisms are important during this time in preventing overproduction of collagen. In silicotic lungs, the early stages of fibroblast activation follow a similar path but appear faster. At a later stage, however, the RNA levels increase again and permit collagen synthesis to continue at a high rate, resulting in massive collagen accumulation.  相似文献   

7.
Skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta synthesized both apparently normal type I procollagen and a type I procollagen that had slow electrophoretic mobility because of posttranslational overmodifications. The thermal unfolding of the collagen molecules as assayed by protease digestion was about 2 degrees C lower than normal. It is surprising, however, that collagenase A and B fragments showed an essentially normal melting profile. Assay of cDNA heteroduplexes with a new technique involving carbodiimide modification indicated a mutation at about the codon for amino acid 550 of the alpha 1(I) chain. Subsequent amplification of the cDNA by the PCR and nucleotide sequencing revealed a single-base mutation that substituted an aspartate codon for glycine at position alpha 1-541 in the COL1A1 gene. The results here confirm previous indications that the effects of glycine substitutions in type I procollagen are highly position specific. They also demonstrate that a recently described technique for detecting single-base differences by carbodiimide modification of DNA heteroduplexes can be effectively employed to locate mutations in large genes.  相似文献   

8.
The expression of stable recombinant human collagen requires an expression system capable of post-translational modifications and assembly of the procollagen polypeptides. Two genes were expressed in the yeast Saccharomyces cerevisiae to produce both propeptide chains that constitute human type I procollagen. Two additional genes were expressed coding for the subunits of prolyl hydroxylase, an enzyme that post-translationally modifies procollagen and that confers heat (thermal) stability to the triple helical conformation of the collagen molecule. Type I procollagen was produced as a stable heterotrimeric helix similar to type I procollagen produced in tissue culture. A key requirement for glutamate was identified as a medium supplement to obtain high expression levels of type I procollagen as heat-stable heterotrimers in Saccharomyces. Expression of these four genes was sufficient for correct assembly and processing of type I procollagen in a eucaryotic system that does not produce collagen.  相似文献   

9.
We have determined the nucleotide sequence of several overlapping cDNA clones encoding the amino-terminal portion of human alpha 1(XI) procollagen. These experiments have revealed that this domain of the pro-alpha(XI) chain displays structural features common to other fibrillar procollagen molecules, such as a putative amino-terminal proteinase cleavage site and an interrupted collagenous segment. In the latter, structural similarities were noted when alpha 1(XI) was compared with alpha 1(II) and alpha 2(V) procollagens. Overall, however, the amino-terminal region of pro-alpha 1(XI) differs greatly in composition and size from that of other fibrillar chains. Nearly three-fourths of this domain is in fact composed of a 383-amino acid globular region in which a 3-cysteine cluster signals the transition to a long and highly acidic carboxyl-terminal segment. Finally, the unrestricted expression of this cartilage-specific collagen gene has been confirmed by the finding of high levels of pro-alpha 1(XI) mRNA in two human rhabdomyosarcoma cell lines.  相似文献   

10.
《The Journal of cell biology》1993,121(5):1181-1189
Previous work from our laboratories has demonstrated that: (a) the striated collagen fibrils of the corneal stroma are heterotypic structures composed of type V collagen molecules coassembled along with those of type I collagen, (b) the high content of type V collagen within the corneal collagen fibrils is one factor responsible for the small, uniform fibrillar diameter (25 nm) characteristic of this tissue, (c) the completely processed form of type V collagen found within tissues retains a large noncollagenous region, termed the NH2- terminal domain, at the amino end of its alpha 1 chain, and (d) the NH2- terminal domain may contain at least some of the information for the observed regulation of fibril diameters. In the present investigation we have employed polyclonal antibodies against the retained NH2- terminal domain of the alpha 1(V) chain for immunohistochemical studies of embryonic avian corneas and for immunoscreening a chicken cDNA library. When combined with cDNA sequencing and molecular rotary shadowing, these approaches provide information on the molecular structure of the retained NH2-terminal domain as well as how this domain might function in the regulation of fibrillar structure. In immunofluorescence and immunoelectron microscopy analyses, the antibodies against the NH2-terminal domain react with type V molecules present within mature heterotypic fibrils of the corneal stroma. Thus, epitopes within at least a portion of this domain are exposed on the fibril surface. This is in marked contrast to mAbs which we have previously characterized as being directed against epitopes located in the major triple helical domain of the type V molecule. The helical epitopes recognized by these antibodies are antigenically masked on type V molecules that have been assembled into fibrils. Sequencing of the isolated cDNA clones has provided the conceptual amino acid sequence of the entire amino end of the alpha 1(V) procollagen chain. The sequence shows the location of what appear to be potential propeptidase cleavage sites. One of these, if preferentially used during processing of the type V procollagen molecule, can provide an explanation for the retention of the NH2-terminal domain in the completely processed molecule. The sequencing data also suggest that the NH2-terminal domain consists of several regions, providing a structure which fits well with that of the completely processed type V molecule as visualized by rotary shadowing.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-alpha) inhibits osteoblast function in vitro by inhibiting collagen deposition. Studies generally support that TNF-alpha does not inhibit collagen biosynthesis by osteoblasts but that collagen deposition is in some way diminished. The study investigated TNF-alpha regulation of biosynthetic enzymes and proteins crucial for posttranslational extracellular collagen maturation in osteoblasts including procollagen C-proteinases, procollagen C-proteinase enhancer, and lysyl oxidase. The working hypothesis is that such regulation could inhibit collagen deposition by osteoblasts. We report that in phenotypically normal MC3T3-E1 osteoblasts, TNF-alpha decreases collagen deposition without decreasing collagen mRNA levels or procollagen protein synthesis. Analyses of the cell layers revealed that TNF-alpha diminished the levels of mature collagen cross-links, pyridinoline and deoxypyridinoline. Further analyses revealed that the mRNA expression for lysyl oxidase, the determining enzyme required for collagen cross-linking, is down-regulated by TNF-alpha in a concentration- and time-dependent manner by up to 50%. The decrease was accompanied by a significant reduction of lysyl oxidase protein levels and enzyme activity. By contrast, Northern and Western blotting studies revealed that procollagen C-proteinases bone morphogenic protein-1 and mammalians Tolloid and procollagen C-proteinase enhancer were expressed in MC3T3-E1 cells and not down-regulated. The data together demonstrate that TNF-alpha does not inhibit collagen synthesis but does inhibit the expression and activity of lysyl oxidase in osteoblasts, thereby contributing to perturbed collagen cross-linking and accumulation. These studies identify a novel mechanism in which proinflammatory cytokine modulation of an extracellular biosynthetic enzyme plays a determining role in the control of collagen accumulation by osteoblasts.  相似文献   

12.
We have studied the folding, processing, and association with two endoplasmic reticulum (ER) resident proteins of the abnormal type I procollagen molecules produced by a strain of fibroblasts harboring a 4.5 kilobase deletion in an allele of COL1A2 (Willing, M. C., Cohn, D.H., Starman, B. Holbrook, K.A., Greenberg, C.R., and Byers, P.H. (1988) J. Biol. Chem. 263, 8398-8404). By sequencing cDNA, we found that the mutant allele encodes pro alpha 2(I) chains that are shortened by 180 amino acids but retain the Gly-X-Y repeat pattern crucial for collagen triple helix formation. The type I procollagen molecules that incorporated the shortened chain were retained intracellularly and were stable. The triple helical domain in these molecules did not attain a normal conformation and remained accessible to posttranslational modifying enzymes amino-terminal to the deletion site for a prolonged period. The abnormal molecules folded into a triple helical conformation more slowly than the normal molecules, and the amino-terminal ends of the pro alpha 1(I) chains failed to become protease-resistant. While the abnormal procollagen molecules were not bound by the ER-resident protein BiP, they stably associated with protein disulfide isomerase, the beta-subunit of prolyl-4-hydroxylase. These results indicate that some mutations in type I collagen genes both transiently delay folding and permanently disrupt the structure of the triple helix and suggest that binding to prolyl-4-hydroxylase helps to retain certain abnormal procollagen molecules within the ER.  相似文献   

13.
14.
15.
16.
It was recently reported that co-expression of the proalpha1(III) chain of human type III procollagen with the subunits of human prolyl 4-hydroxylase in Pichia pastoris produces fully hydroxylated and properly folded recombinant type III procollagen molecules (Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., Kivirikko, K.I., 1997. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J. 16, 6702-6712). These properly folded molecules accumulated inside the yeast cell, however, only approximately 10% were found in the culture medium. We report here that replacement of the authentic signal sequence of the human proalpha1(III) with the Saccharomyces cerevisiae alpha mating factor prepro sequence led only to a minor increase in the amount secreted. Immunoelectron microscopy studies indicated that the procollagen molecules accumulate in specific membranous vesicular compartments that are closely associated with the nuclear membrane. Prolyl 4-hydroxylase, an endoplasmic reticulum (ER) lumenal enzyme, was found to be located in the same compartments. Non-helical proalpha1(III) chains produced by expression without recombinant prolyl 4-hydroxylase likewise accumulated within these compartments. The data indicate that properly folded recombinant procollagen molecules accumulate within the ER and do not proceed further in the secretory pathway. This may be related to the large size of the procollagen molecule.  相似文献   

17.
Unhydroxylated and hydroxylated procollagen and collagen were compared by zone velocity and isopycnic centrifugation. The sedimentation coefficient of unhydroxylated procollagen(3.7 S) was slightly less than that of hydroxylated procollagen (3.9 S) and the sedimentation coefficient of unhydroxylated collagen (2.9 S) was slightly less than hydroxylated collagen (3.2 S). These differences could be accounted for largely by the slight increase in molecular weight and density of the hydroxylated molecules. The results indicate that the unhydroxylated molecules are in a triple helical conformation composed of three chains rather than analogous helical structures formed by the back-folding of individual chains. We conclude, therefore, that previous experiments demonstrating the decreased thermal stability of unhydroxylated collagen relative to hydroxylated collagen have measured the denaturation of true triple helices.  相似文献   

18.
The Disproportionate micromelia (Dmm) mouse has a three nucleotide deletion in Col2a1 in the region encoding the C-propeptide which results in the substitution of one amino acid, Asn, for two amino acids, Lys-Thr. Western blot and immunohistochemical analyses failed to detect type II collagen in the cartilage matrix of the homozygous mice and showed reduced levels in the matrix of heterozygous mice. Type II collagen chains localized intracellularly within the chondrocytes of homozygote and heterozygote tissues. These findings provide evidence that the expression of type II procollagen chains containing the defective C-propeptide results in an intracellular retention and faulty secretion of type II procollagen molecules. A complete absence of mature type II collagen from the homozygote cartilage and an insufficiency of type II collagen in the heterozygote cartilage explains the Dmm mouse phenotype. The integrity of the C-propeptide is thus crucial for the biosynthesis of normal type II collagen by chondrocytes.  相似文献   

19.
20.
The rate of biosynthesis of procollagen IV, the principal collagen of basement membranes, and the concentration of specific RNAs coding for procollagen IV were measured in neonatal rat lungs. Both decreased sharply at birth and then recovered again a few days later. The supramolecular assembly of procollagen IV was followed in neonatal rat, mouse, and chick lungs, which actively elaborate endothelial and alveolar basement membranes, and in chick embryo gizzard which is rich in smooth muscle. The tetramer of four procollagen IV molecules linked covalently through their amino ends was isolated as an assembly intermediate from all these tissues. While noncovalent association of the carboxyl ends of two procollagen IV molecules occurred readily, the subsequent establishment of covalent cross-links was substantially slower in the junctional complexes of the carboxyl ends than of the amino ends. Both disulfide bonds and other, unidentified covalent links formed. The six component carboxyl peptides of a junctional complex became progressively covalently linked into two kinds of carboxyl peptide pairs. We conclude that both amino-linked tetramers and carboxyl-linked dimers of procollagen IV molecules are intermediates in the biological assembly of the collagen networks of these basement membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号