首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Endometriosis is a disorder that affects 5% of the normal population but is present in up to 40% of women with pelvic pain and/or infertility. Recent evidence suggests that the endometrium of women with endometriosis exhibits progesterone insensitivity. One endometrial protein that fluctuates in response to progesterone is the estrogen receptor-alpha (ER alpha), being down-regulated at the time of peak progesterone secretion during the window of implantation. Here we demonstrate that the biomarker of uterine receptivity, beta 3 integrin subunit, is reduced or absent in some women with endometriosis and that such defects are accompanied by inappropriate over-expression of ER alpha during the mid-secretory phase. Using a well-differentiated endometrial cell line we showed that the beta 3 integrin protein is negatively regulated by estrogen and positively regulated by epidermal growth factor (EGF). By competing against estrogen with various selective estrogen receptor modulators (SERMs) and estrogen receptor agonists and antagonists, inhibition of expression of the beta 3 integrin by estrogen can be mitigated. In conclusion, we hypothesize that certain types of uterine receptivity defects may be caused by the loss of appropriate ER alpha down-regulation in the mid-secretory phase, leading to defects in uterine receptivity. Such changes might be effectively treated by timely administration of the appropriate anti-estrogens to artificially block ER alpha and restore normal patterns of gene expression. Such treatments will require further clinical studies.  相似文献   

5.
Although Hmgn5 is involved in the regulation of cellular proliferation and differentiation, its physiological function during decidualization is still unknown. Here we showed that Hmgn5 was highly expressed in the decidual cells. Silencing of Hmgn5 expression by specific siRNA reduced the proliferation of uterine stromal cells and expression of Ccnd3 and Cdk4 in the absence or presence of estrogen and progesterone, whereas overexpression of Hmgn5 exhibited the opposite effects. Simultaneously, Hmgn5 might induce the expression of Prl8a2 and Prl3c1 which were 2 well-known differentiation markers for decidualization. In the uterine stromal cells, cAMP analog 8-Br-cAMP and progesterone could up-regulate the expression of Hmgn5, but the up-regulation was impeded by H89 and RU486, respectively. Attenuation of Hmgn5 expression could block the differentiation of uterine stromal cells in response to cAMP and progesterone. Further studies found that regulation of cAMP and progesterone on Hmgn5 expression was mediated by Hoxa10. During in vitro decidualization, knockdown of Hmgn5 could abrogate Hoxa10-induced upregulation of Prl8a2 and Prl3c1, while overexpression of Hmgn5 reversed the inhibitory effects of Hoxa10 siRNA on the expression of Prl8a2 and Prl3c1. In the stromal cells undergoing decidualization, Hmgn5 might act downstream of Hoxa10 to regulate the expression of Cox-2, Vegf and Mmp2. Collectively, Hmgn5 may play an important role during mouse decidualization.  相似文献   

6.
The success of postnatal uterine morphogenesis dictates, in part, the embryotrophic potential and functional capacity of the adult uterus. The definitive role of Wnt7a in postnatal uterine development and adult function requires a conditional knockout, because global deletion disrupts müllerian duct patterning, specification, and cell fate in the fetus. The Wnt7a-null uterus appears to be posteriorized because of developmental defects in the embryo, as evidenced by the stratified luminal epithelium that is normally found in the vagina and the presence of short and uncoiled oviducts. To understand the biological role of WNT7A after birth and allow tissue-selective deletion of Wnt7a, we generated loxP-flanked exon 2 mice and conditionally deleted Wnt7a after birth in the uterus by crossing them with Pgr(Cre) mice. Morphological examination revealed no obvious differences in the vagina, cervix, oviduct, or ovary. The uteri of Wnt7a mutant mice contained no endometrial glands, whereas all other uterine cell types appeared to be normal. Postnatal differentiation of endometrial glands was observed in control mice, but not in mutant mice, between Postnatal Days 3 and 12. Expression of morphoregulatory genes, particularly Foxa2, Hoxa10, Hoxa11, Msx1, and Wnt16, was disrupted in the Wnt7a mutant uteri. Conditional Wnt7a mutant mice were not fertile. Although embryos were present in uteri of mutant mice on Day 3.5 of pregnancy, blastocyst implantation was not observed on Day 5.5. Furthermore, expression of several genes (Foxa2, Lif, Msx1, and Wnt16) was reduced or absent in adult Wnt7a-deleted uteri on Day 3.5 postmating. These results indicate that WNT7A plays a critical role in postnatal uterine gland morphogenesis and function, which are important for blastocyst implantation and fertility in the adult uterus.  相似文献   

7.
8.
9.
Blastocyst implantation and successful establishment of pregnancy require delicate interactions between the embryo and the maternal uterine milieu, which are controlled at the embryo-maternal interface by the coordinated interplay of a variety of growth factors, cytokines, hormones, and cell adhesion molecules expressed by both the decidualized endometrium and the trophoblast cells. Proper implantation of the embryo is solely dependent on the initial endometrial receptivity and the preparation of the blastocyst to glue itself to the uterine wall. Both these events are considered to be mediated by cell adhesion molecules and integrins expressed by the blastocyst as well by as the maternal endometrium. Integrin expression by the blastocyst and the uterus is a dynamic process. However, reports on the expression and the hormonal modulation of integrins and their role in blastocyst activation and uterine receptivity during implantation are meager. The present study investigates the expression and hormonal regulation of alpha4beta1 integrin by steroid hormones in the blastocyst and the receptive uterus using an in vivo, delayed-implantation mouse model system. The dormant and activated blastocysts as well as the uteri were recovered from ovariectomized mice after progesterone-alone and progesterone-plus-estrogen therapy, respectively. Immunolocalization of protein expression of alpha4 and beta1 integrin subunits indicate that steroids modulate the expression of alpha4beta1 integrin receptor in the mouse blastocyst as well as the uterus and that a differential expression is observed with exposure to progesterone and estrogen. Intrauterine blocking of alpha4 integrin by specific antibody resulted in implantation failure in normal as well as in delayed-implantation mice. Based on our data, we propose here, to our knowledge for the first time, that alpha4beta1 integrin, which is responsible for binding to fibronectin and vascular cell adhesion molecule-1, is induced by estradiol and is down-regulated by progesterone in mice during implantation. Furthermore, the results also indicate the direct role of alpha4 integrin in the process of implantation.  相似文献   

10.
Galectin-1 is a member of β-galactoside-binding lectins expressed in a variety of mammalian tissues. We report here that galectin-1 mRNA is abundantly expressed in the mouse reproductive organs such as the uterus and ovary. Uterine expression of galectin-1 mRNA is specifically regulated in the embryonic implantation process. Its expression increased at a high level on the fifth day post coitum (dpc 5) when embryos hatched into the endometrial epithelial cells. In the absence of embryos, however, galectin-1 expression in the mouse uterus decreased on dpc 5. In the delayed implantation mice, galectin-1 mRNA level was augmented by the termination of the delay of implantation. Ovarian steroids progesterone and estrogen differentially regulated galectin-1 mRNA level in uterine tissues. Treatment with RU486, a progesterone receptor antagonist, blocked progesterone-induced galectin-1 mRNA level in uterine tissues of ovariectomized mouse. ICI182780, a pure estrogen receptor antagonist, clearly blocked the estrogen effect. Taken together, galectin-1 gene expression in the uterine tissues was regulated by ovarian steroids and this regulation correlated with the implantation process. Mol. Reprod. Dev. 48:261–266, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
12.
Several early (Phase I) and late (Phase II) estrogenic effects of 9-ene-tetrahydrocannabinol (THC) were examined in the adult mouse uterus. An injection of THC (2.5 or 10 mg/kg body wt) in ovariectomized mice neither stimulated uterine water imbibition or accumulation of [125I]bovine serum albumin (Phase I responses) at 6 h, nor antagonized these Phase I responses elicited by estradiol-17 beta (E2). With respect to Phase II responses, although single injections of THC (2.5, 5.0 and 10 mg/kg body wt) alone were ineffective in influencing uterine weight at 24 h or incorporation of [3H]thymidine at 18 h, this drug interfered with these responses elicited by E2 in a dose-dependent manner. In contrast, an injection of THC in progesterone (P4)-primed ovariectomized mice modestly enhanced (61%) uterine incorporation of [3H]thymidine. However, E2-stimulated uterine thymidine incorporation in P4-primed ovariectomized mice was antagonized by THC treatment. Effects of THC on blastocyst implantation were examined. Single or multiple injections of various doses of THC neither induced implantation in P4-primed delayed implanting mice, nor interfered with E2-induced implantation. Furthermore, daily injections of THC (10 mg/kg body wt) during the peri-implantation period had no apparent adverse effects on implantation, or on experimentally induced decidualization (deciduomata). The data suggest that THC is neither pro- nor antiestrogenic with respect to Phase I responses. However as regards Phase II responses, THC is modestly pro-estrogenic in the P4-treated uterus, but is anti-estrogenic in the presence of E2. These estrogen agonistic/antagonistic effects of THC on uterine Phase II responses do not adversely affect the process of implantation and decidualization.  相似文献   

13.
Hama K  Aoki J  Bandoh K  Inoue A  Endo T  Amano T  Suzuki H  Arai H 《Life sciences》2006,79(18):1736-1740
Reciprocal interactions between blastocysts and receptive uteri are essential for successful implantation. This process is regulated by the timely interplay of two ovarian hormones, progesterone and estrogen. However, the molecular targets of these hormones are largely unknown. We showed recently that a small bioactive lysophospholipid, lysophosphatidic acid, plays a pivotal role in the establishment of implantation via its cellular receptor, LPA(3). Here we demonstrate that LPA(3) expression is positively and negatively regulated by steroid hormones in mouse uteri. The LPA(3) mRNA level in the uteri increased during early pseudopregnancy, peaking around 3.5 days post coitus (3.5 d.p.c.), then, decreased to the basal level on 4.5 d.p.c. LPA(3) expression remained at a low level in ovariectomized mice, and administration of progesterone to ovariectomized mice up-regulated LPA(3) mRNA expression. In addition, simultaneous administration of estrogen counteracted the effect of progesterone. These results show that progesterone and estrogen cooperatively regulate LPA(3) expression, thereby contributing to the receptivity of uteri during early pregnancy.  相似文献   

14.
The retinoic acid (RA) synthesizing enzymes, retinaldehyde dehydrogenases (RALDH), are expressed in specific spatial and temporal patterns in uterine tissues during estrous cycle and early pregnancy in mice. Expression of RALDH1 and 2 has been shown to be induced by estrogen treatment within the uterus. In this study, we determined the influence of progesterone and 17-ss-estradiol on the uterine expression of the RA-metabolizing enzyme CYP26A1 after specific time intervals (1, 4, 24, and 48 hr after treatment of ovariectomized mice). In a following experiment, we investigated the influence of gestagen (promegestone 0.3 mg/kg body weight), estrogen (estradiol 3 microg/kg), their combination, as well as the antagonizing anti-progesterone hormone (RU 486 10 mg/kg) on the uterine expression of CYP26A1. Expression of CYP26A1 was localized using in situ hybridization and quantified using RT-PCR. CYP26A1 mRNA expression was strongly--although transiently--induced in uterine endometrial epithelial and glandular cells after administration of gestagen or the combination of gestagen + estrogen, but not by estrogen alone. These observations were confirmed by semi-quantitative RT-PCR experiments on whole uteri. Thus, we show that the expression of CYP26A1 in endometrial epithelial cells is regulated by progesterone and not significantly influenced by co-administration of estrogen. These data indicate an additional level of hormonal control of endogenous RA levels in the mouse uterus, where its synthesis would rely on estrogen-dependent expression of RALDH enzymes, whereas its active metabolism would be triggered by progesterone-induced CYP26A1 expression.  相似文献   

15.
16.
Data indicate that estrogen-dependent and -independent pathways are involved in the teratogenic/carcinogenic syndrome that follows developmental exposure to 17beta-estradiol or diethylstilbestrol (DES), a synthetic estrogen. However, the exact role and extent to which each pathway contributes to the resulting pathology remain unknown. We employed the alphaERKO mouse, which lacks estrogen receptor-alpha (ERalpha), to discern the role of ERalpha and estrogen signaling in mediating the effects of neonatal DES exposure. The alphaERKO provides the potential to expose DES actions mediated by the second known ER, ERbeta, and those that are ER-independent. Wild-type and alphaERKO females were treated with vehicle or DES (2 microg/pup/day for Days 1-5) and terminated after 5 days and 2, 4, 8, 12, and 20 months for biochemical and histomorphological analyses. Assays for uterine expression of the genes Hoxa10, Hoxa11, and Wnt7a shortly after treatment indicated significant decreases in DES-treated wild-type but no effect in the alphaERKO. In contrast, the DES effect on uterine expression of Wnt4 and Wnt5a was preserved in both genotypes, suggesting a developmental role for ERbeta. Adult alphaERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure exhibited in treated wild-type animals, including atrophy, decreased weight, smooth muscle disorganization, and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent vaginal cornification. Therefore, the lack of DES effects on gene expression and tissue differentiation in the alphaERKO provides unequivocal evidence of an obligatory role for ERalpha in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract.  相似文献   

17.
Regulation of progesterone receptor (PR) in uterine stroma (endometrial stroma plus myometrium) by estrogen was investigated in estrogen receptor-alpha (ERalpha) knockout (alphaERKO) mice. 17 beta-Estradiol (E(2)) increased PR levels in uterine stroma of ovariectomized alphaERKO mice, and ICI 182 780 (ICI) inhibited this E(2)-induced PR expression. Estrogen receptor-beta(ER beta) was detected in both uterine epithelium and stroma of wild-type and alphaERKO mice by immunohistochemistry. In organ cultures of alphaERKO uterus, both E(2) and diethylstilbestrol induced stromal PR, and ICI inhibited this induction. These findings suggest that estrogen induces stromal PR via ERbeta in alphaERKO uterus. However, this process is not mediated exclusively by ERbeta+, because in ERbeta knockout mice, which express ERalpha, PR was up-regulated by E(2) in uterine stroma. In both wild-type and alphaERKO mice, progesterone and mechanical traumatization were essential and sufficient to induce decidual cells, even though E(2) and ERalpha were also required for increase in uterine weight. Progesterone receptor was strongly expressed in decidual cells in alphaERKO mice, and ICI did not inhibit decidualization or PR expression. This study suggests that up-regulation of PR in endometrial stroma is mediated through at least three mechanisms: 1) classical estrogen signaling through ERalpha, 2) estrogen signaling through ERbeta, and 3) as a result of mechanical stimulation plus progesterone, which induces stromal cells to differentiate into decidual cells. Each of these pathways can function independently of the others.  相似文献   

18.
Signals from the developing mammalian blastocyst rescue the corpus luteum (CL) and modulate the uterine environment in preparation for implantation and early pregnancy. Our previous studies demonstrated that both short- and long-term administration of chorionic gonadotropin (CG) markedly alters the morphology and the biochemical activity of the receptive endometrium. Because the effects of CG were superimposed on a progesterone-primed endometrium, this study was undertaken to determine if the inhibition of progesterone action by progesterone receptor antagonists (PRa) in intact and ovariectomized baboons would alter the action of CG on the endometrium at the time of uterine receptivity. In the short-term hCG-treated baboons, the PRa reduced the epithelial plaque reaction, completely inhibited alpha-smooth muscle actin (alphaSMA) expression in stromal fibroblasts, and induced the reappearance of the progesterone (PR) and estrogen (ERalpha) receptors in epithelial cells. However, this treatment protocol had no effect on the expression of glycodelin in the glandular epithelium. In contrast, glycodelin expression in addition to alphaSMA was suppressed in the ovariectomized animals. In the long-term hCG-treated baboons, the PRa had a similar effect on both alphaSMA, PR, and ER. In addition, this treatment also resulted in an inhibition of glycodelin expression in the glandular epithelium. These results indicate that blocking the action of progesterone on the endometrium even for a short period of time has a profound effect on the hCG-induced response in stromal fibroblasts. In contrast, for the diminution of glandular epithelial function in the presence of an ovary requires prolonged inhibition of progesterone action, suggesting a potential paracrine effect on the endometrium from the CL in response to hCG.  相似文献   

19.
During endometrial differentiation the extracellular matrix (ECM) changes dramatically to prepare for implantation of the embryo. However, the genes regulating the ECM build-up in the uterine endometrium during early pregnancy are not well known. Using the PCR-select cDNA subtraction method, dermatopontin was identified in the uterus of a pregnant mouse on day 4 of gestation. Dermatopontin mRNA increased dramatically on day 3, and was at its highest level at the time of implantation. Administration of RU 486 significantly inhibited mRNA expression by day 4 of gestation, but ICI 182,780 did not. Progesterone markedly induced dermatopontin expression in ovariectomized uteri within 4 h of administration, whereas estrogen had little effect. In silico analysis revealed progesterone receptor binding sites in the dermatopontin promoter region. Decidualization did not induce expression of dermatopontin; instead dermatopontin mRNA became strongly localized at the interimplantation site. In situ hybridization revealed that expression gradually decreased in the luminal epithelial cells as pregnancy progressed, whereas it increased in the stromal cells. The pattern of localization and the changes of intensity of dermatopontin mRNA coincided with those of collagen. Collectively, these results strongly suggest that dermatopontin expression is steroid-dependent. They also suggest that, at the time of implantation, dermatopontin expression is primarily regulated spatio-temporally by progesterone via progesterone receptors, and is modulated by the decidual response during implantation. Dermatopontin may be one of the regulators used to remodel the uterine ECM for pregnancy.  相似文献   

20.
Steroid hormones regulate endometrial gene expression to meet the needs of developing embryos. Our hypothesis is that steroid hormones transiently induce expression of genes in the endometrial epithelium to make the uterine environment different between the earliest days of pregnancy. We identified one such gene product using differential display-polymerase chain reactions. The gene product that was strongly induced in ewes between day 3 and 6 of the estrous cycle was cloned and sequenced to identify it as encoding a member of the Nudix family of hydrolase enzymes. Northern blot analyses indicated that NUDT16 mRNA concentrations were elevated 10-fold in the endometrium of sheep from day 5 to 9 of the estrous cycle and returned to basal levels by day 11. In assays of RNA samples from 15 different tissues from an adult ewe, the concentrations of NUDT16 mRNA were greatest in endometrium. In situ hybridization localized NUDT16 mRNA exclusively to the endometrial epithelial cells of the glands and uterine lumen. In ovariectomized ewes, NUDT16 mRNA was induced by a regimen of alternating estrogen and progesterone therapy designed to mimic the hormonal experiences of a ewe at day 6 of the estrous cycle. The final estrogen treatment in the regimen was critical to the expression of NUDT16 as well as progesterone receptor and estrogen receptor-beta genes. Characterization of the NUDT16 gene identified putative steroid hormone response elements, which can now be investigated to understand its unique pattern of regulation in the earliest days of pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号