首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many of pathogen parasite species with different susceptibility profile to antiparasitic drugs. Unfortunately, almost QSAR models predict the biological activity of drugs against only one parasite species. Consequently, predicting the probability with which a drug is active against different species with a single unify model is a goal of the major importance. In so doing, we use Markov Chains theory to calculate new multi-target spectral moments to fit a QSAR model that predict by the first time a mt-QSAR model for 500 drugs tested in the literature against 16 parasite species and other 207 drugs no tested in the literature using spectral moments. The data was processed by linear discriminant analysis (LDA) classifying drugs as active or non-active against the different tested parasite species. The model correctly classifies 311 out of 358 active compounds (86.9%) and 2328 out of 2577 non-active compounds (90.3%) in training series. Overall training performance was 89.9%. Validation of the model was carried out by means of external predicting series. In these series the model classified correctly 157 out 190, 82.6% of antiparasitic compounds and 1151 out of 1277 non-active compounds (90.1%). Overall predictability performance was 89.2%. In addition we developed four types of non Linear Artificial neural networks (ANN) and we compared with the mt-QSAR model. The improved ANN model had an overall training performance was 87%. The present work report the first attempts to calculate within a unify framework probabilities of antiparasitic action of drugs against different parasite species based on spectral moment analysis.  相似文献   

2.
One limitation of almost all antiviral Quantitative Structure–Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. 2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg. Med. Chem. 2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg. Med. Chem. 2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug–drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity = 84.62%) and 119 of 139 non-active compounds (sensitivity = 85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug–drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.  相似文献   

3.
4.
Many drugs with very different affinity to a large number of receptors are described. Thus, in this work, we selected drug-target pairs (DTPs/nDTPs) of drugs with high affinity/nonaffinity for different targets. Quantitative structure-activity relationship (QSAR) models become a very useful tool in this context because they substantially reduce time and resource-consuming experiments. Unfortunately, most QSAR models predict activity against only one protein target and/or they have not been implemented on a public Web server yet, freely available online to the scientific community. To solve this problem, we developed a multitarget QSAR (mt-QSAR) classifier combining the MARCH-INSIDE software for the calculation of the structural parameters of drug and target with the linear discriminant analysis (LDA) method in order to seek the best model. The accuracy of the best LDA model was 94.4% (3,859/4,086 cases) for training and 94.9% (1,909/2,012 cases) for the external validation series. In addition, we implemented the model into the Web portal Bio-AIMS as an online server entitled MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool (MIND-BEST), located at http://miaja.tic.udc.es/Bio-AIMS/MIND-BEST.php . This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally, we illustrated two practical uses of this server with two different experiments. In experiment 1, we report for the first time a MIND-BEST prediction, synthesis, characterization, and MAO-A and MAO-B pharmacological assay of eight rasagiline derivatives, promising for anti-Parkinson drug design. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF and -TOF/TOF MS, MASCOT search, 3D structure modeling with LOMETS, and MIND-BEST prediction for different peptides as new protein of the found in the proteome of the bird parasite Trichomonas gallinae, which is promising for antiparasite drug targets discovery.  相似文献   

5.
There are many different kinds of pathogenic bacteria species with very different susceptibility profiles to different antibacterial drugs. One limitation of QSAR models is that they consider the biological activity of drugs against only one species of bacteria. In a previous paper, we developed a unified Markov model to describe the biological activity of different drugs tested in the literature against some antimicrobial species. Consequently, predicting the probability with which a drug is active against different species of bacteria with a single unified model is a goal of major importance. The work described here develops the unified Markov model to describe the biological activity of more than 70 drugs from the literature tested against 96 species of bacteria. We applied linear discriminant analysis (LDA) to classify drugs as active or inactive against the different tested bacterial species. The model correctly classified 199 out of 237 active compounds (83.9%) and 168 out of 200 inactive compounds (84%). Overall training predictability was 84% (367 out of 437 cases). Validation of the model was carried out using an external predicting series, with the model classifying 202 out of 243 (i.e., 83.13%) of the compounds. In order to show how the model functions in practice, a virtual screening was carried out and the model recognized as active 84.5% (480 out of 568) antibacterial compounds not used in the training or predicting series. The current study is an attempt to calculate within a unified framework the probabilities of antibacterial action of drugs against many different species.  相似文献   

6.
7.
8.
9.
A quantitative structure-activity relationship (QSAR) study has been performed on integrase (IN) inhibition activity of a large series of N-methyl pyrimidones [Gardelli et al. (2007) J Med Chem 50, 4953-4975)] having varying heterocyclic ring substitution at 2-position of pyrimidone ring. The activity is found to be significantly correlated with surface tension and molar volume of the molecules. The whole series of compounds is divided into two subsets: a training set and a test set. A significant correlation is obtained for the training set, which is then used to predict the activity of compounds in the test set. The predicted activities of compounds in the test set are found to be very close to their observed activities. The predicting ability of the correlation obtained is judged by leave-one-out jackknife procedure. The correlation shows the effective role of the surface tension and molar volume of the molecules. From the correlation obtained, the integrase inhibition activities are predicted for some new prospective compounds.  相似文献   

10.
11.
Streptococci are a group of Gram-positive bacteria which are responsible for causing many diverse diseases in humans and other animals worldwide. The high prevalence of resistance of these bacteria to current antibacterial drugs is an alarming problem for the scientific community. The battle against streptococci by using antimicrobial chemotherapies will depend on the design of new chemicals with high inhibitory activity, having also as low toxicity as possible. Multi-target approaches based on quantitative–structure activity relationships (mt-QSAR) have played a very important role, providing a better knowledge about the molecular patterns related with the appearance of different pharmacological profiles including antimicrobial activity. Until now, almost all mt-QSAR models have considered the study of biological activity or toxicity separately. In the present study, we develop by the first time, a unified multitasking (mtk) QSAR model for the simultaneous prediction of anti-streptococci activity and toxic effects against biological models like Mus musculus and Rattus norvegicus. The mtk-QSAR model was created by using artificial neural networks (ANN) analysis for the classification of compounds as positive (high biological activity and/or low toxicity) or negative (otherwise) under diverse sets of experimental conditions. Our mtk-QSAR model, correctly classified more than 97% of the cases in the whole database (more than 11,500 cases), serving as a promising tool for the virtual screening of potent and safe anti-streptococci drugs.  相似文献   

12.
13.
The synthesis and characterization of a new series of furan-3-carboxamides, from the aromatization of 4-trichloroacetyl-2,3-dihydrofuran to 3-trichloroacetyl furan followed by nucleophilic displacement of the trichloromethyl group or the corresponding carboxylic acid chloride by nitrogen-containing compounds, is presented. Preliminary in vitro antimicrobial activity of the title compounds was assessed against a panel of microorganisms including yeast, filamentous fungi, bacteria, and alga. Some of the furan-3-carboxamides exhibited significant in vitro antimicrobial activity. QSAR investigation was applied to find a correlation between the different physicochemical parameters of the compounds studied and their biological activity.  相似文献   

14.
There are many protein ligands and/or drugs described with very different affinity to a large number of target proteins or receptors. In this work, we selected Ligands or Drug-target pairs (DTPs/nDTPs) of drugs with high affinity/non-affinity for different targets. Quantitative Structure-Activity Relationships (QSAR) models become a very useful tool in this context to substantially reduce time and resources consuming experiments. Unfortunately most QSAR models predict activity against only one protein target and/or have not been implemented in the form of public web server freely accessible online to the scientific community. To solve this problem, we developed here a multi-target QSAR (mt-QSAR) classifier using the MARCH-INSIDE technique to calculate structural parameters of drug and target plus one Artificial Neuronal Network (ANN) to seek the model. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 20:20-15-1:1. This MLP classifies correctly 611 out of 678 DTPs (sensitivity=90.12%) and 3083 out of 3408 nDTPs (specificity=90.46%), corresponding to training accuracy=90.41%. The validation of the model was carried out by means of external predicting series. The model classifies correctly 310 out of 338 DTPs (sensitivity=91.72%) and 1527 out of 1674 nDTP (specificity=91.22%) in validation series, corresponding to total accuracy=91.30% for validation series (predictability). This model favorably compares with other ANN models developed in this work and Machine Learning classifiers published before to address the same problem in different aspects. We implemented the present model at web portal Bio-AIMS in the form of an online server called: Non-Linear MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool (NL MIND-BEST), which is located at URL: http://miaja.tic.udc.es/Bio-AIMS/NL-MIND-BEST.php. This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally we illustrated two practical uses of this server with two different experiments. In experiment 1, we report by first time Quantum QSAR study, synthesis, characterization, and experimental assay of antiplasmodial and cytotoxic activities of oxoisoaporphine alkaloids derivatives as well as NL MIND-BEST prediction of potential target proteins. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF, and -TOF/TOF MS, MASCOT search, MM/MD 3D structure modeling, and NL MIND-BEST prediction for different peptides a new protein of the found in the proteome of the human parasite Giardia lamblia, which is promising for anti-parasite drug-targets discovery.  相似文献   

15.
A series of benzodiazepine compounds, which act as gamma-secretrase inhibitors were subjected to QSAR studies. A correlation between the physicochemical properties QlogP, SMR and the inhibitory activity was obtained and a model equation was generated to predict the best possible pharmacophore for treating Alzheimer's disease. The inhibitory activity of the compound depends on the lipophilicity positively and is sensitive to small changes in its SMR. The compound with a high lipophilicity (around 9.31) and low SMR gives a potent activity.  相似文献   

16.
17.
A quantitative structure–activity relationship (QSAR) study is made on a series of aromatic/heterocyclic sulfonamides and their charged derivatives acting as carbonic anhydrase (CA) inhibitors. These compounds were studied by Scozzafava et al. (J. Med. Chem. 2000; 43: 292) for the selective inhibition of CAs—sulfonamides generally do not discriminate between different CA isozymes and hence exhibit many undesirable side effects when used as drugs against a particular disease. In this communication, an attempt has been made to investigate the physicochemical and structural properties that can make them selective for a given CA isozyme. Based on in vitro data reported by Scozzafava et al. against two cytosolic isozymes and one membrane-bound isozyme, the QSAR study has shown that uncharged compounds cannot be made selective for cytosolic or membrane-bound isozyme since in both the cases the compounds appear to follow the same mechanism of inhibition. However, for the charged compounds the polarizability of the molecule seems to greatly favor the inhibition of the membrane-bound enzyme, and hence they can be made selective for this enzyme by enhancing their polarizability, which is found to play no role in the inhibition of cytosolic enzymes.  相似文献   

18.
19.
The toxicity and inefficacy of actual organic drugs against Leishmaniosis justify research projects to find new molecular targets in Leishmania species including Leishmania infantum (L. infantum) and Leishmaniamajor (L. major), both important pathogens. In this sense, quantitative structure-activity relationship (QSAR) methods, which are very useful in Bioorganic and Medicinal Chemistry to discover small-sized drugs, may help to identify not only new drugs but also new drug targets, if we apply them to proteins. Dyneins are important proteins of these parasites governing fundamental processes such as cilia and flagella motion, nuclear migration, organization of the mitotic splinde, and chromosome separation during mitosis. However, despite the interest for them as potential drug targets, so far there has been no report whatsoever on dyneins with QSAR techniques. To the best of our knowledge, we report here the first QSAR for dynein proteins. We used as input the Spectral Moments of a Markov matrix associated to the HP-Lattice Network of the protein sequence. The data contain 411 protein sequences of different species selected by ClustalX to develop a QSAR that correctly discriminates on average between 92.75% and 92.51% of dyneins and other proteins in four different train and cross-validation datasets. We also report a combined experimental and theoretic study of a new dynein sequence in order to illustrate the utility of the model to search for potential drug targets with a practical example. First, we carried out a 2D-electrophoresis analysis of L. infantum biological samples. Next, we excised from 2D-E gels one spot of interest belonging to an unknown protein or protein fragment in the region M<20,200 and pI<4. We used MASCOT search engine to find proteins in the L. major data base with the highest similarity score to the MS of the protein isolated from L. infantum. We used the QSAR model to predict the new sequence as dynein with probability of 99.99% without relying upon alignment. In order to confirm the previous function annotation we predicted the sequences as dynein with BLAST and the omniBLAST tools (96% alignment similarity to dyneins of other species). Using this combined strategy, we have successfully identified L. infantum protein containing dynein heavy chain, and illustrated the potential use of the QSAR model as a complement to alignment tools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号