首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamic secondary ion mass spectrometry (SIMS) has been utilised to study the post-mortem distribution of aluminium in air-dried frozen sections from unfixed, unstained human brain in order to minimise contamination of the tissue and avoid redistribution and extraction of endogenous tissue aluminium. Substrates, sputter-coated with silver, were found to be free of focal aluminum surface contamination and thus minimised substrate induced artefacts in the tissue aluminium ion image. SIMS imaging of aluminium secondary ions at a mass resolution that eliminated the major molecular interferences, combined with a photomontage technique provided a unique strategy for studying aluminium distribution in tissue unrivalled by other spatially resolved microanalytical techniques such as laser microprobe mass spectrometry or X-ray microanalysis. Using this strategy, high densities of focal aluminium accumulations have been demonstrated in the cerebral cortex of the majority of chronic renal dialysis patients studied. In contrast, such aluminium accumulations were absent in control patients. SIMS imaging of aluminium appeared to provide much better discrimination between the dialysis patient group and the control group than one of the most widely used techniques for measuring aluminium in bulk samples, graphite furnace atomic absorption spectrometry. Preliminary studies have shown the feasibility of quantifying focal aluminium SIMS images obtained from brain tissue using aluminium-loaded brain homogenates as reference standards.  相似文献   

2.
Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques.  相似文献   

3.
Revealing the uptake, transport, localization and speciation of both essential and toxic elements in plants is important for understanding plant homeostasis and metabolism, subsequently, providing information for food and nutrient studies, agriculture activities, as well as environmental research. In the last decade, emerging techniques for elemental imaging and speciation analysis allowed us to obtain increasing knowledge of elemental distribution and availabilities in plants. Chemical imaging techniques include mass spectrometric methods such as secondary ionization mass spectrometry (SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron-based techniques such as X-ray fluorescence spectroscopy (SRXRF), and so forth. On the other hand, X-ray absorption spectroscopy (XAS) based on synchrotron radiation is capable of in situ investigation of local atomic structure around the central element of interest. This technique can also be operated in tandem with SRXRF to image each element species of interest within plant tissue. In this review, the principles and state-of-the-art of these techniques regarding sample preparation, advantages and limitations, and improvement of sensitivity and spatial resolution are discussed. New results with respect to elemental distribution and speciation in plants revealed by these techniques are presented.  相似文献   

4.
Secondary ion mass spectrometry (SIMS) microscopy, a mass spectrometry method designed in the 1960s, offers new analytical capabilities, high sensitivity (ppm to ppb region), high specificity and improved lateral resolution, thus facilitating insight into many physiological and biomedical questions. Apart from the sample preparation and the physical characteristics of the detection, the biological model must also be considered. SIMS analysis of diffusible ions and molecules requires strict cryogenic procedures which always begin by a flash-freeze fixation. Cellular integrity can be checked by mapping the major element distributions since intra and extracellular ions are redistributed only in damaged cells. Cryofixing may be followed either by a freeze-fracture methodology or by cryoembedding and dry-cutting. Chemical sample preparation is only used for ions or molecules bound to fixed cell structures. The use of scanning procedures ameliorates the lateral resolution and chromosome imaging has been reported with probe size of below 50nm. Absolute quantification can be derived for embedded specimen by using internal references included in tissue equivalent resins. The sensitivity is limited by the ionization yield of the tag element and may be further impaired when working at high mass resolution (≥5000) to eliminate interfering cluster ions. SIMS drug mapping is usually performed after in vitro administration of a molecule to cell culture systems. Drug detection is accomplished indirectly by detecting a tag isotope naturally present or introduced by labelling, mainly with halogens,15N and14C. Molecular imaging with TOF-SIMS is an appealing alternative especially for heavier compounds. We stress some biological problems through a critical review of published SIMS drug studies. SIMS proved useful in assessing the targeting specificity of nuclear medicine pharmaceutics, even after in vivo administration. The first microscopic evidence of a thionamide induced follicular blockade of the iodine organification process is presented in a human sample.  相似文献   

5.
New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.  相似文献   

6.
Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians.Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position.Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition.  相似文献   

7.
Visualization of single molecules and specific subsets of cells is widely used for studies of biological processes and particularly in immunological research. Recent technological advances have provided a qualitative change in biological visualization from studying of ??snapshot?? pictures to real-time continuous observation of cellular dynamics in vivo. Contemporary methods of in vivo imaging make it possible to localize specific cells within organs and tissues, to study their differentiation, migration, and cell-to-cell interactions, and to follow some intracellular events. Fluorescence intravital microscopy plays an especially important role in high resolution molecular imaging. The methods of intravital microscopy are quickly advancing thanks to improvements in molecular sensors, labeling strategies, and detection approaches. Novel techniques allow simultaneous detection of various probes with better resolution and depth of imaging. In this review, we describe current methods for in vivo imaging, with special accent on fluorescence approaches, and discuss their applications for medical and biological studies.  相似文献   

8.
Sample preparation is a critical step in the elemental analysis of animal tissues and cell cultures with ion microscopy. Since live cells cannot be analyzed with ion microscopy, a careful sample fixation is necessary which preserves the native structural and chemical integrity of a specimen. The evaluation of morphological and chemical integrity of a fixed specimen is necessary before any physiological explanation of ion fluxes is interpreted based on ion microscopy. For diffusible ion localization studies, strict cryogenic procedures are recommended. Examples are shown for diffusible ion microanalysis in frozen-freeze-dried tissues and cell cultures. Ion microscopy studies of tightly bound elements/molecules may be conducted in chemically fixed and/or plastic embedded specimens. Since it is not generally known which elements/molecules are tightly bound to the tissue matrix, a confirmation of elemental distribution with cryogenic procedures is desirable. A recent approach of combining laser scanning confocal fluorescence microscopy and ion microscopy on the same frozen freeze-dried cell is also discussed for recognizing smaller cytoplasmic structures in ion microscopy images.  相似文献   

9.
Monolayer cultures of human fibroblasts were incubated for 24 h with 14C-arginine and observed by means of SIMS microscopy (ion microscopy). Carbon 14 imaging showed the intracellular distribution of labelled arginine which featured high nuclear incorporation. The local concentration of this amino acid in different cells and intracellular structures was assessed through local isotopic 14C/12C ratio measurement. This relates the signal intensity of the labelling isotope carbon 14 to that of the corresponding natural isotope (carbon 12) of known tissular concentration. Using this method we were able to measure minor variations in the molecular concentration of arginine (expressed as mumol/g of tissue) between different fibroblasts. Results of this study indicate that SIMS microscopy is well adapted to carbon 14 detection and can provide quantitative maps of the cellular and subcellular distribution of 14C-labelled molecules.  相似文献   

10.
Soft X-ray contact microscopy with synchrotron radiation offers the biologist, and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM, or SEM methods (i.e., hydrated samples, samples easily damaged by an electron beam, electron-dense samples, thick specimens, unstained, low-contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash X-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of X-ray wavelengths or specific individual wavelengths that optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of X-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples.  相似文献   

11.
We attempted to indicate the requirements for biomedical applications of SIMS microscopy. Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue. Furthermore, it is often necessary to correlate ionic and light microscope images. This implies a common methodological approach to sample preparation for both microscopes. The use of low or high mass resolution depends on the elements studied and their concentrations. To improve the acquisition and processing of images, digital imaging systems have to be designed and require both ionic and optical image superimposition. However, the images do not accurately reflect element concentration; a relative quantitative approach is possible by measuring secondary ion beam intensity. Using an internal reference element (carbon) and standard curves the results are expressed in micrograms/mg of tissue. Despite their limited lateral resolution (0.5 microns) the actual SIMS microscopes are very suitable for the resolution of biomedical problems posed by action modes and drug localization in human pathology. SIMS microscopy should provide a new tool for metabolic radiotherapy by facilitating dose evaluation. The advent of high lateral resolution SIMS imaging (less than 0.1 microns) should open up new fields in biomedical investigation.  相似文献   

12.
Secondary ion mass spectrometry (SIMS) permits the detection of stable and radioactive elements in microvolume. Based on the ablation of specimens by ion bombardment, this mass spectrometry method allows a rapid assessment of trace elements in biological samples and enables accurate isotopic ratio determination. In this work, an application of SIMS in studies involving element microdistribution is illustrated on the basis of analyses of duodenal tissue sections from rats contaminated with either cerium or thorium. For this purpose, tests are performed with SIMS to analyze tissue sections obtained 12, 24 and 48 hr after contamination. In this report, strengths and limitations of SIMS are pointed out as an important tool in biological research.  相似文献   

13.
This paper reviews the most recent methodological advances in the field of biological imaging using dynamic secondary ion mass spectrometry (SIMS). After a short reminder of the basic principle of SIMS imaging, the latest high-resolution dynamic SIMS equipment is briefly described. This new ion nanoprobe (CAMECA NanoSIMS 50) has a lateral resolution of less than 50 nm with primary Cs+ ion, the ability to detect simultaneously 5 different ions from the same micro-volume and a very good transmission even at high mass resolution (60% at M/DeltaM=5000). Basic considerations related to sample preparation, mass resolution and primary ion implantation are given. The decisive capability of this new instrument, and more generally of high-resolution dynamic SIMS imaging in biology, are illustrated with the most recent examples of utilization.  相似文献   

14.
Scanning tunneling microscopy with applications to biological surfaces   总被引:1,自引:0,他引:1  
Each major advance in the field of microscopy has eventually been translated into major advances in the biological and medical sciences. The scanning tunneling microscope (STM) offers exciting new ways of imaging biological surfaces with resolution to the sub-molecular scale. Rigid, conductive surfaces can readily be imaged with the STM with atomic resolution. Unfortunately, few biological surfaces are sufficiently conductive or rigid enough to be examined directly with the STM. At present, non-conductive surfaces can be examined in two ways: 1) Sufficiently thin molecular layers attached to conductive substrates so that tunneling can occur through the molecules; or 2) coating or replicating non-conductive surfaces with metal layers so as to make them conductive, then imaging with the STM. We present images of biological and organic molecules obtained with these techniques that demonstrate the possibilities and limitations of each. Future advances leading to atomic resolution STM of biological surfaces depend on significant progress in the art and science of making biomaterials compatible with the restrictions of the instrument.  相似文献   

15.
To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as ‘correlative microscopy’. Correlative imaging allows researchers to gain additional novel structure–function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or ‘combined’) microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.  相似文献   

16.
Intrinsic opacity and inhomeogeniety of most biological tissues have prevented the efficient light penetration and signal detection for high-resolution confocal imaging of thick tissues. Here, we summarize recent technical advances in high-resolution confocal imaging for visualization of cellular structures and gene expression within intact whole-mount thick tissues. First, we introduce features of the FocusClear technology that render biological tissue transparent and thus improve the light penetration and signal detection. Next, a universal fluorescence staining method that labels all nuclei and membranes is described. We then demonstrate the postrecording image processing techniques for 3D visualization. From these images, regions of interest in the whole-mount brain can be segmented and volume rendered. Together, these technical advances in confocal microscopy allow visualization of structures within whole-mount tissues up to 1mm thick at a resolution similar to that of the observation of single cells in culture. Practical uses and limitations of these techniques are discussed.  相似文献   

17.
Fundamental advances in secondary ion mass spectrometry (SIMS) now allow for the examination and characterization of lipids directly from biological materials. The successful application of SIMS-based imaging in the investigation of lipids directly from tissue and cells are demonstrated. Common complications and technical pitfalls are discussed. In this review, we examine the use of cluster ion sources and cryogenically compatible sample handling for improved ion yields and to expand the application potential of SIMS. Methodological improvements, including pre-treating the sample to improve ion yields and protocol development for 3-dimensional analyses (i.e. molecular depth profiling), are also included in this discussion. New high performance SIMS instruments showcasing the most advanced instrumental developments, including tandem MS capabilities and continuous ion beam compatibility, are described and the future direction for SIMS in lipid imaging is evaluated.  相似文献   

18.
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can “detect” raft domains associated with molecules of interest in the PM.  相似文献   

19.
The combined use of ultrastructural morphometry and X-ray microanalysis in conjunction with biochemical analysis is one approach to elucidating mechanisms of metal nephrotoxicity at the cellular level. Ultrastructural morphometry conducted on proximal tubule cells of rats exposed to low levels of methyl mercury for prolonged periods of time showed statistically significant increases in the volume densities of the lysosomal and mitochondrial compartments. These findings were associated with marked changes in lysosomal marker enzymes and mitochondrial heme biosynthesis enzymes leading to the detection of a renal porphyrinuria that occurred before changes in standard tests of renal function. Ultrastructural morphometry, X-ray microanalysis, and biochemical studies of the low-molecular-weight tubular proteinuria produced by injection of cadmium metallothionein (CdMT) showed a rapid proximal tubule cell lysosome uptake and degradation of the CdMT complex, which led to a subsequent decrease in the numerical density (Nv) and average diameter of lysosomes and to an increase in the Nv of apical pinocytolic vesicles with time. The data indicate disruption of the normal primary lysosome-pinocytolic vesicle fusion process and related development of tubular proteinuria. Ultrastructural techniques may provide information useful in elucidating mechanisms of ongoing metal-induced nephrotoxic processes when consideration is given to sampling strategies for morphometric analysis and the inherent detection limits, elemental volatility, translocation effects, and limitations of quantification for X-ray microanalysis in soft biological tissues.  相似文献   

20.
Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies-secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption/ionization mass spectrometry (MALDI MS)-are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enables new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号