首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt tolerance has been analysed in two populations of F7 lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Salinity effects on 19 quantitative traits including fruit yield were investigated by correlation, principal component analysis, ANOVA and QTL analysis. A total of 153 and 124 markers were genotyped in the P and C populations, respectively. Some flowering time and salt tolerance candidate genes were included. Since most traits deviated from a normal distribution, results based on the Kruskal–Wallis non-parametric test were preferred. Interval mapping methodology and ANOVA were also used for QTL detection. Eight out of 15 QTLs at each population were detected for the target traits under both control and high salinity conditions, and among them, only average fruit weight (FW) and fruit number (FN) QTLs (fw1.1, fw2.1 and fn1.2) were detected in both populations. The individual contribution of QTLs were, in general, low. After leaf chloride concentration, flowering time is the trait most affected by salinity because different QTLs are detected and some of their QTL×E interactions have been found significant. Also reinforcing the interest on information provided by QTL analysis, it has been found that non-correlated traits may present QTL(s) that are associated with the same marker. A few salinity specific QTLs for fruit yield, not associated with detrimental effects, might be used to increase tomato salt tolerance. The beneficial allele at two of them, fw8.1 (in C) and tw8.1 (for total fruit weight in P) corresponds to the salt sensitive parent, suggesting that the effect of the genetic background is crucial to breed for wide adaptation using wild germplasm.  相似文献   

2.
3.
The wheat (Triticum aestivum L.) cultivar ‘Stephens’ has been grown commercially in the USA Pacific Northwest for 30 years. The durable resistance of ‘Stephens’ to stripe rust (Puccinia striiformis f. sp. tritici) was believed to be due to a combination of seedling and adult plant resistance genes. Multilocation field trials, diversity array technology (DArT), and simple sequence repeat (SSR) markers were used to identify quantitative trait loci (QTL) for resistance. Recombinant inbred lines were assessed for stripe rust response in eight locations/years, five in 2008 and three in 2009. The data from Mt. Vernon, WA, differed from all other environments, and composite interval mapping (CIM) identified three QTL, QYrst.orr-1AL, QYrst.orr-4BS, and QYrpl.orr-6AL, which accounted for 12, 11, and 6% of the phenotypic variance, respectively. CIM across the remaining six environments identified four main QTL. Two QTL, QYrst.orr-2BS.2 and QYrst.orr-7AS, were detected in five of six environments and explained 11 and 15% of the phenotypic variance, respectively. Two other QTL, QYrst.orr-2AS and QYrpl.orr-4BL, were detected across four and three of six environments, and explained 19 and 9% of the phenotypic variance, respectively. The susceptible parent ‘Platte’ contributed QYrpl.orr-4BL and QYrpl.orr-6AL, with the remaining QTL originating from ‘Stephens’. For each environment, additional minor QTL were detected, each accounting for 6–10% of the phenotypic variance. Different QTL with moderate effects were identified in both ‘Stephens’ and ‘Platte’. Significant QTL × environment interactions were evident, suggesting that specificity to plant stage, pathogen genotype, and/or temperature was important.  相似文献   

4.
 Quantitative trait loci (QTL) controlling the regeneration ability of rice seed callus were detected using 245 RFLP markers and 98 BC1F5 lines derived from two varieties, ‘Nipponbare’ and ‘Kasalath’. Regeneration ability was evaluated by two indices: average number of regenerated shoots per callus (NRS) and regeneration rate (RR). The BC1F5 lines showed continuous segregation for both indices. Five putative QTL for NRS (tentatively named qRg1, qRg2, qRg4a, qRg4b and qRg4c) located on chromosomes 1, 2 and 4 were detected. Digenic interaction among these detected QTL was not significant (P<0.01). Among the five QTL detected, four ‘Kasalath’ alleles and one ‘Nipponbare’ allele increased NRS. According to an estimate based on the nearest marker loci, the five QTL accounted for 38.5% of the total phenotypic variation of the BC1F5 lines. For RR, four putative QTL were detected on chromosomes 2 and 4, and all of these were in the same chromosomal regions as the NRS QTL. The four RR QTL accounted for 32.6% of the total phenotypic variation. Received: 7 November 1996 / Accepted: 25 April 1997  相似文献   

5.
We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.  相似文献   

6.
One outcome of hybrid breakdown is poor growth, which we observed as a reduction in the number of panicles per plant and in culm length in an F2 population derived from a cross between the genetically divergent rice (Oryza sativa L.) cultivars ‘Sasanishiki’ (japonica) and ‘Habataki’ (indica). Quantitative trait locus (QTL) analysis of the two traits and two-way ANOVA of the detected QTLs suggested that the poor growth was due mainly to an epistatic interaction between genes at QTLs located on chromosomes 2 and 11. The poor growth was likely to result when a plant was homozygous for the ‘Habataki’ allele at the QTL on chromosome 2 and homozygous for the ‘Sasanishiki’ allele at the QTL on chromosome 11. The results suggest that the poor growth found in the F2 population was due to hybrid breakdown of a set of complementary genes. To test this hypothesis and determine the precise chromosomal location of the genes causing the hybrid breakdown, we performed genetic analyses using a chromosome segment substitution line, in which a part of chromosome 2 from ‘Habataki’ was substituted into the genetic background of ‘Sasanishiki’. The segregation patterns of poor growth in plants suggested that both of the genes underlying the hybrid breakdown were recessive. The gene on chromosome 2, designated hybrid breakdown 2 (hbd2), was mapped between simple sequence repeat markers RM3515 and RM3730. The gene on chromosome 11, hbd3, was mapped between RM5824 and RM1341. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The nutritional value and yield potential of US Western Shipping melon (USWS; Cucumis melo L.) could be improved through the introgression of genes for early fruit maturity (FM) and the enhancement of the quantity of β-carotene (QβC) in fruit mesocarp (i.e., flesh color). Therefore, a set of 116 F3 families derived from the monoecious, early FM Chinese line ‘Q 3-2-2’ (no β-carotene, white mesocarp) and the andromonoecious, late FM USWS line ‘Top Mark’ (possessing β-carotene, orange mesocarp) were examined during 2 years in Wisconsin, USA to identify quantitative trait loci (QTL) associated with FM and QβC. A 171-point F2–3 based map was constructed and used for QTL analysis. Three QTL associated with QβC were detected, which explained a significant portion of the observed phenotypic variation (flesh color; R 2 = 4.0–50.0%). The map position of one QTL (β-carM.E.9.1) was uniformly aligned with one carotenoid-related gene (Orange gene), suggesting its likely role in QβC in this melon population and putative relationship with the melon white flesh (wf) gene. Two major (FM.6.1 and FM.11.1; R 2 ≥ 20%) and one minor QTL (FM.2.1; R 2 = 8%) were found to be associated with FM. This map was then merged with a previous recombinant inbred line (RIL)-based map used to identify seven QTL associated with QβC in melon fruit. This consensus map [300 molecular markers (187 co-dominant melon and 14 interspecific; 10 LG)] provides a framework for the further dissection and cloning of published QTL, which will consequently lead to more effective trait introgression in melon.  相似文献   

8.
Apple exhibits gametophytic self-incompatibility (GSI) that is controlled by the multiallelic S-locus. This S-locus encodes polymorphicS ribonuclease (S-RNase) for the pistil-part 5 determinant. Information aboutS-genotypes is important when selecting pollen donors for fruit production and breeding of new cultivars. We determined the 5-genotypes of ‘Charden’ (S2S3S4), ‘Winesap’ (S1S28), ‘York Imperial’ (S2S31), ‘Stark Earliblaze’ (S1S28), and ‘Burgundy’ (S20S32), byS-RNase sequencing and S-allele-specific PCR analysis. Two newS-RNases, S31 and S32, were also identified from ‘York Imperial’ and ‘Burgundy’, respectively. These newS-alleles contained the conserved eight cysteine residues and two histidine residues essential for RNase activity. Whereas S31 showed high similarity to S20 (94%), S32 exhibited 58% (to S24) to 76% (to S25) similarity in the exon regions. We designed newS-allele-specific primers for amplifying S31- and S32-RNasc-specific fragments; these can serve as specific gene markers. We also rearranged the apple S-allele numbers containing those newS-RNases. They should be useful, along with anS-RNase-based PCR system, in determining S-genotypes and analyzing new alleles from apple cultivars.  相似文献   

9.
Fire blight caused by the bacterium Erwinia amylovora is a severe threat to apple and pear orchards worldwide. Apple varieties exhibit a wide range of relative susceptibility/tolerance to fire blight. Although, no monogenic resistance against fire blight has been identified yet, recent evidence indicates the existence of quantitative resistance. Potential sources of fire blight resistance include several wild Malus species and some apple cultivars. F1 progenies of ‘Fiesta’בDiscovery’ were inoculated with the Swiss strain Ea 610 and studied under controlled conditions to identify quantitative trait loci (QTLs) for fire blight resistance. Disease was evaluated at four time points after inoculation. Shoot lesion length and the area under disease progress curve (AUDPC) values were used for QTL analysis. One significant (LOD score of 7.5–8.1, p<0.001) QTL was identified on the linkage group 7 of ‘Fiesta’ (F7). The F7 QTL explained about 37.5–38.6% of the phenotypic variation.  相似文献   

10.
 A recombinant inbred line derived from a cross between CO39 and ‘Moroberekan’, RIL276, was found to be resistant to lineage 44 isolates of Pyricularia grisea in the Philippines. One hundred F2 individuals were obtained from a backcross of RIL276 and CO39. Phenotypic analysis showed that RIL276 carries a single locus, tentatively named Pi44(t), conferring complete resistance to lineage 44 isolates of P. grisea. RFLP probes, STS primers and AFLP markers were applied to identify DNA markers linked to Pi44(t). Neither RFLP nor STS-PCR analysis gave rise to DNA markers linked to the locus. Using bulk segregant AFLP analysis, however, two dominant AFLP markers (AF348 and AF349) linked to Pi44(t) were identified. AF349 and AF348 were located at 3.3±1.5 cM and 11±3.5 cM from Pi44(t), respectively. These markers were mapped on chromosome 11 using an F2 population derived from a cross between ‘Labelle’ and ‘Black Gora’. The location of AF348 on chromosome 11 was confirmed using another F2 mapping population derived from IR40931-26-3-3-5/ PI543851. DNA products at the loci linked to Pi44(t) were amplified from RIL276, ‘Labelle’ and PI543851 using the same primer pairs used to amplify AF349 and AF348. Sequence analysis of these bands showed 100% identity between lines. This result indicates that these AFLP markers could be used for the comparison of maps or assignment of linkage groups to chromosomes. Received: 12 May 1998 / Accepted: 13 November 1998  相似文献   

11.
Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat growing regions of the world. To identify quantitative trait loci (QTLs) for spot blotch resistance, two mapping populations were developed by making the crosses between common susceptible cultivar ‘Sonalika’ with the resistant breeding lines ‘Ning 8201’ and ‘Chirya 3’. Single seed descent derived F6, F7, F8 lines of the first cross ‘Ning 8201’ × ‘Sonalika’ were evaluated for resistance to spot blotch in three blocks in each of the 3 years. After screening of 388 pairs of simple sequence repeat primers between the two parents, 119 polymorphic markers were used to genotype the mapping population. Four QTLs were identified on the chromosomes 2AS, 2BS, 5BL and 7DS and explained 62.9% of phenotypic variation in a simultaneous fit. The QTL on chromosome 2A was detected only in 1 year and explained 22.7% of phenotypic variation. In the second cross (‘Chirya 3’ × ‘Sonalika’), F7 and F8 population were evaluated in three blocks in each of the 2 years. In this population, five QTLs were identified on chromosomes 2BS, 2DS, 3BS, 7BS and 7DS. The QTLs identified in the ‘Chirya 3’ × ‘Sonalika’ population explained 43.4% of phenotypic variation in a simultaneous fit. The alleles for reduced disease severity in both the populations were derived from the respective resistant parent. The QTLs QSb.bhu-2B and QSb.bhu-7D from both populations were placed in the same deletion bins, 2BS1-0.53-0.75 and 7DS5-0.36-0.61, respectively. The closely linked markers Xgwm148 to the QTL on chromosome 2B and Xgwm111 to the QTL on chromosome 7D are potentially diagnostic markers for spot blotch resistance.  相似文献   

12.
Mating disruption treatments for the tufted apple bud moth (TABM),Platynota idaeusalis (Walker), were tested in small plot trials in apple orchards in Pennsylvania. Treatments were evaluated by fruit injury and by capture of male TABM in traps baited with synthetic pheromone sources or virgin females. The TABM pheromone is a two component isomeric blend ofE-11-tetradecen-1-ol (E11-14:OH) andE-11-tetradecenyl acetate (E11-14:Ac). A 50∶50 ratio of these two components was used in standard monitoring septa and in mating disruption treatments released from either hollow fibers (‘fiber’) or PVC tubes (‘PVC’). Other pheromone blends tested included a 90∶10 ratio of E11-14: Ac and E11-14:OH (‘EAc’) and its reverse (‘EOH’), mixture ‘EAc’ with 30% of the Z-isomers (‘low AEc’), and a blend similar to the preceding with 2% Z9-12:Ac (‘generic’). These other blends were released from multi tube tape (‘tape’) or Shin-Etsu type rope (‘rope’) dispensers. Seasonal dispenser release rate in mg ha−1 h−1 was ca. 30 for the ‘rope’ dispensers, 14 for ‘PVC’ and 6 for ‘fiber’. ‘EAc-tape’ and ‘EOH-tape’ were equally effective in reducing catches of males in traps baited with synthetic lures and in traps baited with virgin females. Both treatments also reduced fruit injury. ‘EAc-rope’, ‘fiber’ and ‘PVC’ also were generally effective; whereas, the ‘low EAc’ and ‘generic’ treatments reduced trap capture less than 90% and did not reduce fruit injury. Dispenser density was positively correlated with reduction in trap capture for the ‘low EAc-rope’ and ‘genericrope’ treatments. Traps loaded with ‘fiber’ dispensers captured more male TABM than the other treatments in non-pheromone permeated environments. Trap capture of other tortricids was reduced in pheromone treatments. ‘EAc-rope’ and the ‘TABM’ treatments provided mean (s.e.) percent reduction in trap catch of 99.5 (0.4) and 42.9 (10.1), respectively, for the redbanded leafroller,Argyrotaenia velutinana (Walker), and 90.4 (6.8) and 90.4 (1.3), respectively, for the obliquebanded leafroller,Choristoneura rosaceana (Harris).  相似文献   

13.
14.
Fusarium head blight (FHB) in wheat results in reduced yield and quality and in accumulation of mycotoxins. The objective of this study was to identify genomic regions in wheat involved in the control of FHB resistance applying a QTL meta-analysis approach by combining QTL of 30 mapping populations to propose independent meta-QTL (MQTL). A consensus map was created on which initial QTL were projected. Nineteen MQTL comprising 2–13 initial QTL with widely varying confidence intervals were found on 12 chromosomes. Some of them coincided with genomic regions previously identified (e.g. chromosomes 3BS, 6B), however, some MQTL were newly detected by this study. Separate analysis of populations with the same resistant parent showed a rather high consistency for the Chinese spring wheat donor ‘Sumai 3’, but little consistency for the Chinese donor ‘Wangshuibai’ and the Swiss donor ‘Arina’. According to our results breeders can in future (1) choose parents for crossing not comprising the same resistance loci or QTL intervals, (2) exploit new MQTL, and (3) select markers of some of these MQTL to be used in marker-assisted selection. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Crown rot (CR), caused by various Fusarium species, is a chronic wheat disease in Australia. As part of our objective of improving the efficiency of breeding CR resistant wheat varieties, we have been searching for novel sources of resistance. This paper reports on the genetic control of one of these newly identified resistant genotypes, ‘CSCR6’. A population derived from a cross between CSCR6 and an Australian variety ‘Lang’ was analyzed using two Fusarium isolates belonging to two different species, one Fusarium pseudograminearum and the other Fusarium graminearum. The two isolates detected QTL with the same chromosomal locations and comparable magnitudes, indicating that CR resistance is not species-specific. The resistant allele of one of the QTL was derived from ‘CSCR6’. This QTL, designated as Qcrs.cpi-3B, was located on the long arm of chromosome 3B and explains up to 48.8% of the phenotypic variance based on interval mapping analysis. Another QTL, with resistant allele from the variety ‘Lang’, was located on chromosome 4B. This QTL explained up to 22.8% of the phenotypic variance. A strong interaction between Qcsr.cpi-3B and Qcsr.cpi-4B was detected, reducing the maximum effect of Qcrs.cpi-3B to 43.1%. The effects of Qcrs.cpi-3B were further validated in four additional populations and the presence of this single QTL reduced CR severity by up to 42.1%. The fact that significant effects of Qcrs.cpi-3B were detected across all trials with different genetic backgrounds and with the use of isolates belonging to two different Fusarium species make it an ideal target for breeding programs as well as for further characterization of the gene(s) involved in its resistance.  相似文献   

16.
Apparent amylose content (AAC), gel consistency (GC), and gelatinization temperature (GT) are recognized as the most important determinants of rice eating and cooking qualities. The contributions of major starch-synthesis genes to these three traits have been investigated in the three consecutive experiments. In an initial QTL mapping with 130 doubled haploid (DH) lines, derived from an inter-subspecific cross of ‘Nanjing11’/‘Balilla’, the major QTLs responsible for AAC, GC, and GT coincided with the Wx (granule-bound starch synthase gene), Wx, and Sss IIa (soluble starch synthase gene) loci, respectively. In the second experiment, contributions of the major starch-synthesis genes to AAC, GC, and GT variations were estimated by using a multiple linear regression analysis. As shown, the Wx locus was a principal determinant for both AAC and GC, and could account for 58.5% and 38.9% of the phenotypic variations, respectively; while the Sss IIa locus was associated with GT, and could explain 25.5% of the observed variation. Eventually, a F2 population consisting of 501 individuals, derived from an inter-subspecific cross of the two sticky rice varieties ‘Suyunuo’ and ‘Yangfunuo 4’, was examined with gene-tagged markers. In the absence of the Wx gene, none of the starch-synthesis genes investigated could dominate the GC variation, however, the Sss IIa locus could also explain 25.1% of the GT variation. In summary, the Wx locus dominates the AAC variation, and meanwhile plays a major role in the GC variation. The Sss IIa locus is a major factor in explaining the GT variation. Apart from the major genes, other genetic factors may also contribute to the GC/GT variations.  相似文献   

17.
Many rice cultivars that originated from lower-latitude regions exhibit a strong photoperiod sensitivity (PS) and show extremely late heading under long-day conditions. Under natural day-length conditions during the cropping season in Japan, the indica rice cultivar ‘Nona Bokra’ from India showed extremely late heading (202 days to heading) compared to the japonica cultivar ‘Koshihikari’ (105 days), from Japan. To elucidate the genetic factors associated with such extremely late heading, we performed quantitative trait locus (QTL) analyses of heading date using an F2 population and seven advanced backcross progeny (one BC1F2 and six BC2F2) derived from a cross between ‘Nona Bokra’ and ‘Koshihikari’. The analyses revealed 12 QTLs on seven chromosomes. The ‘Nona Bokra’ alleles of all QTLs contributed to an increase in heading date. Digenic interactions were rarely observed between QTLs. Based on the genetic parameters of the QTLs, such as additive effects and percentage of phenotypic variance explained, these 12 QTLs are likely generate a large proportion of the phenotypic variation observed in the heading dates between ‘Nona Bokra’ and ‘Koshihikari’. Comparison of chromosomal locations between heading date QTLs detected in this study and QTLs previously identified in ‘Nipponbare’ × ‘Kasalath’ populations revealed that eight of the heading date QTLs were recognized nearby the Hd1, Hd2, Hd3a, Hd4, Hd5, Hd6, Hd9, and Hd13. These results suggest that the strong PS in ‘Nona Bokra’ was generated mainly by the accumulation of additive effects of particular alleles at previously identified QTLs.  相似文献   

18.
Using RAPD marker analysis, two quantitative trait loci (QTLs) associated with earliness due to reduced fruit-ripening time (days from anthesis to ripening = DTR) were identified and mapped in an F2 population derived from a cross between Lycopersicon esculentum’E6203’ (normal ripening) and Lycopersicon esculentum’Early Cherry’ (early ripening). One QTL, on chromosome 5, was associated with a reduction in both ripening time (5 days) and fruit weight (29.3%) and explained 15.8 and 13% of the total phenotypic variation for DTR and fruit weight, respectively. The other QTL, on chromosome 12, was primarily associated with a reduction only in ripening time (7 days) and explained 12.3% of the total phenotypic variation for DTR. The gene action at this QTL was found to be partially dominant (d/a=0.41). Together, these two QTLs explained 25.1% of the total phenotypic variation for DTR. Additionally, two QTLs associated with fruit weight were identified in the same F2 population and mapped to chromosomes 4 and 6, respectively. Together, these two QTLs explained 30.9% of the total phenotypc variation for fruit weight. For all QTLs, the ’Early Cherry’ alleles caused reductions in both ripening time and fruit weight. The polymorphic band for the most significant RAPD marker (OPAB-06), linked to the reduced ripening time QTL on chromosome 12, was converted to a cleaved amplified polymorphism (CAP) assay for marker-aided selection and further introgression of early ripening time (DTR) into cultivated tomato. Received: 15 March 1999 / Accepted: 29 April 1999  相似文献   

19.
20.
The consistency of quantitative trait locus (QTL) effects among genetic backgrounds is a key factor for introgressing QTLs from initial mapping experiments into applied breeding programs. We have selected four QTLs (fs6.4, fw4.3, fw4.4 and fw8.1) involved in melon fruit morphology that had previously been detected in a collection of introgression lines derived from the cross between a Spanish cultivar, “Piel de Sapo,” and the Korean accession PI161375 (Songwan Charmi). Introgression lines harboring these QTLs were crossed with an array of melon inbred lines representative of the most important cultivar types. Hybrids of the introgression and inbred lines, with the appropriate controls, were evaluated in replicated agronomic trials. The effects of the QTLs were consistent among the different genetic backgrounds, demonstrating the utility of these QTLs for applied breeding programs in modifying melon fruit morphology. Three QTLs, fw4.4, fs6.4 and fs12.1 were subjected to further study in order to map them more accurately by substitution mapping using a new set of introgression lines with recombination events within the QTL chromosome region. The position of the QTLs was narrowed down to 36–5 cM, depending on the QTL. The results presented in the current study set the basis for the use of these QTLs in applied breeding programs and for the molecular characterization of the genes underlying them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号