首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the major DNA-binding protein (ICP8) from herpes simplex virus type 1 to identify its DNA-binding site. Since we obtained our protein from a cell line carrying multiple chromosomally located copies of the ICP8 gene, we first analyzed this protein to assess its similarity to the corresponding viral protein. Our protein resembled the viral protein by molecular weight, response to antibody, preference for binding single-stranded DNA, and ability to lower the melting temperature of poly(dA-dT). To define the DNA-binding domain, we subjected the protein to limited trypsin digestion and separated the peptide products on a sodium dodecyl sulfate-polyacrylamide gel. These fragments were then transferred to a nitrocellulose membrane, renatured in situ, and tested for their ability to bind DNA. From this assay, we identified four fragments which both bound DNA and exhibited the expected binding preference for single-stranded DNA. The sequence of the smallest of these fragments was determined and corresponds to a polypeptide spanning residues 300 to 849 in the intact protein. This peptide contains several regions which may be important for DNA binding based on sequence similarities in single-stranded DNA-binding proteins from other herpesviruses and, in one case, on a conserved sequence found in more distant procaryotic and eucaryotic proteins.  相似文献   

2.
The competition of the DNA-binding proteins I and II of Escherichia coli and of the phage fd DNA-binding protein for single-stranded DNA was investigated. Their roles in cells might be judged from their binding affinities to DNA and their mutual exchange in the DNA . protein complexes. Strongest binding on single strands was found for the phage protein. DNA-binding protein II displaced half of the protein I in the complex with single-stranded DNA when no double-stranded DNA was present. Protein-complexed single strands were protected against degradation. The protection is less pronounced for protein II which can increase the stability of the fd DNA complex with DNA-binding protein I against nucleolytic cleavage.  相似文献   

3.
P Sen  G J Pazour  D Anderson    A Das 《Journal of bacteriology》1989,171(5):2573-2580
The VirE2 protein of Agrobacterium tumefaciens Ti plasmid pTiA6 is a single-stranded-DNA-binding protein. Density gradient centrifugation studies showed that it exists as a tetramer in solution. Monomeric VirE2 active in DNA binding could also be obtained by using a different protein isolation procedure. VirE2 was found to be thermolabile; brief incubation at 37 degrees C abolished its DNA-binding activity. It was insensitive to the sulfhydryl-specific reagent N-ethylmaleimide. Removal of the carboxy-terminal 37 residues of the 533-residue VirE2 polypeptide led to complete loss of DNA-binding activity; however, chimeric fusion proteins containing up to 125 residues of the VirE2 C terminus were inactive in DNA binding. In nuclease protection studies, VirE2 protected single-stranded DNA against degradation by DNase I. Analysis of the DNA-VirE2 complex by electron microscopy demonstrated that VirE2 coats a single-stranded DNA molecule and that the binding of VirE2 to its substrate is cooperative.  相似文献   

4.
A protein which binds to either single-stranded or double-stranded deoxyribonucleic acid (DNA) but not to ribonucleic acid has been isolated by osmotic shock treatment of growing cells. This periplasmic protein differs from the principal intracellular binding protein in its greater thermolability and by the absence of salt-induced cooperativity in its interaction with single-stranded DNA. Certain mutant strains of Haemophilus influenzae defective in the DNA suptake steps of genetic transformation were found to be deficient in periplasmic DNA-binding protein, suggesting that this protein participates in the uptake of DNA in transformation.  相似文献   

5.
Single-stranded DNA-binding proteins have in common their crucial roles in DNA metabolism, although they exhibit significant differences in their single-stranded DNA binding properties. To evaluate the correlation between the structure of different nucleoprotein complexes and their function, we have carried out a comparative study of the complexes that the single-stranded DNA-binding proteins of three related bacteriophages, ?29, Nf and GA-1, form with single-stranded DNA. Under the experimental conditions used, ?29 and Nf single-stranded DNA-binding proteins are stable monomers in solution, while GA-1 single-stranded DNA-binding protein presents a hexameric state, as determined in glycerol gradients. The thermodynamic parameters derived from quenching measurements of the intrinsic protein fluorescence upon single-stranded DNA binding revealed (i) that GA-1 single-stranded DNA-binding protein occludes a larger binding site (n=51 nt/oligomer) than ?29 and Nf SSBs (n=3.4 and 4.7 nt/monomer, respectively); and (ii) that it shows a higher global affinity for single-stranded DNA (GA-1 SSB, K(eff)=18.6 x 10(5) M(-1); o29 SSB, K(eff)=2.2 x 10(5) M(-1); Nf SSB, K(eff)=2.9 x 10(5) M(-1)). Altogether, these parameters justify the differences displayed by the GA-1 single-stranded DNA-binding protein and single-stranded DNA complex under the electron microscope, and the requirement of higher amounts of ?29 and Nf single-stranded DNA-binding proteins than of GA-1 SSB in gel mobility shift assays to produce a similar effect. The structural differences of the nucleoprotein complexes formed by the three single-stranded DNA-binding proteins with single-stranded DNA correlate with their different functional stimulatory effects in ?29 DNA amplification.  相似文献   

6.
Bacteriophage T7 gene 2.5 protein has been purified to homogeneity from cells overexpressing its gene. Native gene 2.5 protein consists of a dimer of two identical subunits of molecular weight 25,562. Gene 2.5 protein binds specifically to single-stranded DNA with a stoichiometry of approximately 7 nucleotides bound per monomer of gene 2.5 protein; binding appears to be noncooperative. Electron microscopic analysis shows that gene 2.5 protein is able to disrupt the secondary structure of single-stranded DNA. The single-stranded DNA is extended into a chain of gene 2.5 protein dimers bound along the DNA. In fluorescence quenching and nitrocellulose filter binding assays, the binding constants of gene 2.5 protein to single-stranded DNA are 1.2 x 10(6) M-1 and 3.8 x 10(6) M-1, respectively. Escherichia coli single-stranded DNA-binding protein and phage T4 gene 32 protein bind to single-stranded DNA more tightly by a factor of 25. Fluorescence spectroscopy suggests that tyrosine residue(s), but not tryptophan residues, on gene 2.5 protein interacts with single-stranded DNA.  相似文献   

7.
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.  相似文献   

8.
The architecture of single-stranded DNA-binding proteins, which play key roles in DNA metabolism, is based on different combinations of the oligonucleotide/oligosaccharide binding (OB) fold. Whereas the polypeptide serving this function in bacteria contains one OB fold, the eukaryotic functional homolog comprises a complex of three proteins, each harboring at least one OB fold. Here we show that unlike these groups of organisms, the Euryarchaeota has exploited the potential in the OB fold to re-invent single-stranded DNA-binding proteins many times. However, the most common form is a protein with two OB folds and one zinc finger domain. We created several deletion mutants of this protein based on its conserved motifs, and from these structures functional chimeras were synthesized, supporting the hypothesis that gene duplication and recombination could lead to novel functional forms of single-stranded DNA-binding proteins. Biophysical studies showed that the orthologs of the two OB fold/one zinc finger replication protein A in Methanosarcina acetivorans and Methanopyrus kandleri exhibit two binding modes, wrapping and stretching of DNA. However, the ortholog in Ferroplasma acidarmanus possessed only the stretching mode. Most interestingly, a second single-stranded DNA-binding protein, FacRPA2, in this archaeon exhibited the wrapping mode. Domain analysis of this protein, which contains a single OB fold, showed that its architecture is similar to the functional homologs thought to be unique to the Crenarchaeotes. Most unexpectedly, genes coding for similar proteins were found in the genomes of eukaryotes, including humans. Although the diversity shown by archaeal single-stranded DNA-binding proteins is unparalleled, the presence of their simplest form in many organisms across all domains of life is of greater evolutionary consequence.  相似文献   

9.
A single-stranded DNA-binding protein (SSB) affinity column was prepared by optimizing the coupling of Escherichia coli single-stranded DNA-binding protein to Affi-Gel 10. The bound SSB retained its ability to specifically bind single-stranded DNA. When nuclease-treated cell extracts were incubated with the SSB beads overnight at 4 degrees C, a major protein of Mr = 25,000 was bound. At shorter incubation times, two additional proteins of Mr = 32,000 and 36,000 were also detected. In the absence of nuclease treatment, eight additional proteins ranging from Mr = 14,000 to 160,000 also bound to the affinity column. The major Mr = 25,000 protein has been shown to be a folded chromosome-associated protein. Its binding to SSB is strongly enhanced by the addition of DNA polymerase III or DNA polymerase III holoenzyme.  相似文献   

10.
Properties of the major DNA-binding protein found in herpes simplex virus-infected cells were investigated by using a filter binding assay and electron microscopy. Filter binding indicated that the stoichiometry of binding of the protein with single-stranded DNA is approximately 40 nucleotides per protein molecule at saturation. Strong clustering of the protein in DNA-protein complexes, indicative of cooperative binding, was seen with the electron microscope. Measurements of single-stranded fd DNA molecules saturated with protein and spread for electron microscopy by using both the aqueous and formamide spreading techniques indicated that the DNA is held in an extended configuration with a base spacing of approximately 0.13 nm per base.  相似文献   

11.
J Davis  M Scherer  W P Tsai    C Long 《Journal of virology》1976,18(2):709-718
A sensitive nitrocellulose filter assay that measures the retention of 125I single-stranded calf thymus DNA has been used to detect and purify DNA-binding proteins that retain a biological function from Rauscher murine leukemia virus. By consecutive purification on oligo (dT)- cellulose and DEAE-Bio-Gel columns and centrifugation in 10 to 30% glycerol gradients, RNA-dependent DNA polymerase has been separated from a second virion DNA-binding protein. The binding of this protein to DNA was strongly affected by NaCl concentration but showed little change in activity over a wide range of temperature or pH. After glycerol gradient purification, polyacrylamide gel electrophoresis of this protein showed one major band with a molecular weight of approximately 9,800. This protein binds about as well as to single-stranded Escherichia coli or calf thymus DNA or 70S type C viral RNA. The binding to 125I single-stranded calf thymus DNA is very efficiently inhibited by unlabeled single-stranded DNA from either E. coli or calf thymus and by 70S murine or feline viral RNA. Much larger amounts of double-stranded DNA are required to produce an equivalent percentage of inhibition. This protein, therefore, shows preferential binding to single-stranded DNA or viral RNA.  相似文献   

12.
Replication protein A (RP-A; also known as replication factor A and human SSB), is a single-stranded DNA-binding protein that is required for simian virus 40 DNA replication in vitro. RP-A isolated from both human and yeast cells is a very stable complex composed of 3 subunits (70, 32, and 14 kDa). We have analyzed the DNA-binding properties of both human and yeast RP-A in order to gain a better understanding of their role(s) in DNA replication. Human RP-A has high affinity for single-stranded DNA and low affinity for RNA and double-stranded DNA. The apparent affinity constant of RP-A for single-stranded DNA is in the range of 10(9) M-1. RP-A has a binding site size of approximately 30 nucleotides and does not bind cooperatively. The binding of RP-A to single-stranded DNA is partially sequence dependent. The affinity of human RP-A for pyrimidines is approximately 50-fold higher than its affinity for purines. The binding properties of yeast RP-A are similar to those of the human protein. Both yeast and human RP-A bind preferentially to the pyrimidine-rich strand of a homologous origin of replication: the ARS307 or the simian virus 40 origin of replication, respectively. This asymmetric binding suggests that RP-A could play a direct role in the process of initiation of DNA replication.  相似文献   

13.
The major herpes simplex virus DNA-binding protein, designated ICP8, binds tightly to single-stranded DNA and is required for replication of viral DNA. The sensitivity of the DNA-binding activity of ICP8 to the action of the sulfhydryl reagent N-ethylmaleimide has been examined by using nitrocellulose filter-binding and agarose gel electrophoresis assays. Incubation of ICP8 with N-ethylmaleimide results in a rapid loss of DNA-binding activity. Preincubation of ICP8 with single-stranded DNA markedly inhibits this loss of binding activity. These results imply that a free sulfhydryl group is involved in the interaction of ICP8 with single-stranded DNA and that this sulfhydryl group becomes less accessible to the environment upon binding. Agarose gel electrophoretic analysis of the binding interaction in the presence and absence of N-ethylmaleimide indicates that the cooperative binding exhibited by ICP8 is lost upon treatment with this reagent but that some residual noncooperative binding may remain. This last result was confirmed by equilibrium dialysis experiments with the 32P-labeled oligonucleotide dT10 and native and N-ethylmaleimide-treated ICP8.  相似文献   

14.
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a "recombination mediator" to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing.  相似文献   

15.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

16.
DNA-binding protein was characterized by previous investigators as a single-stranded DNA-binding protein analogous to the gene 32 protein of phage T4 (Van der Vliet &; Levine, 1973; Sugawara et al., 1977). In the studies presented here the interactions between natural and synthetic polynucleotides and the DNA-binding protein of adenovirus 2-infected HeLa cells have been examined. Polynucleotide melting techniques revealed a tight yet dissociable binding to the helix structure of double-stranded DNA. In addition, binding and filter binding competition experiments at high DNA to protein ratios revealed a specific binding to double-stranded DNA termini with a dissociation constant of 1 × 10?9 to 2 × 10?9m. The ability of DNA-binding protein to bind to heat-denatured viral DNA was confirmed but the binding to double-stranded DNA termini was more specific on a molar basis. DNA-binding protein can recognize both flush and staggered ends of double-stranded DNA molecules.  相似文献   

17.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

18.
SPSF I and II are two cellular proteins which bind specifically to single-stranded DNA. SPSF I and II binding sites are found in the minimal origin of replication of BPV-1 DNA and near the P2 promoter of the cellular c-myc gene. DNA-binding properties of the two proteins to single-stranded oligonucleotides of different lengths and sequences were quantified by determination of DNA-binding constants. The binding constant of SPSF proteins to the lower strand of the BPV-1 origin was determined to be 1.5 x 10(-10) M-1. Peptide sequences derived from purified SPSF I and II revealed the identity of at least one of the SPSF proteins with the so-called HeLa Pur alpha factor. The HeLa Pur alpha factor was identified previously by virtue of its capacity to bind to purine-rich strands of the PUR element found in initiation zones of DNA replication [Bergemann, A.D., Ma,Z.-W. and Johnson, E.M. (1992) Mol. Cell. Biol. 12, 5673-5682]. Expression of the Pur cDNA confirmed the identity of the Pur alpha protein with the 42 kDa SPSF I protein. Analysis of several Pur alpha cDNA clones revealed the existence of an extended 3'-untranslated region in all Pur mRNAs.  相似文献   

19.
The major herpes simplex virus DNA-binding protein, ICP8, was purified from cells infected with the herpes simplex virus type 1 temperature-sensitive strain tsHA1. tsHA1 ICP8 bound single-stranded DNA in filter binding assays carried out at room temperature and exhibited nonrandom binding to single-stranded bacteriophage fd DNA circles as determined by electron microscopy. The filter binding assay results and the apparent nucleotide spacing of the DNA complexed with protein were identical, within experimental error, to those observed with wild-type ICP8. Thermal inactivation assays, however, showed that the DNA-binding activity of tsHA1 ICP8 was 50% inactivated at approximately 39 degrees C as compared with 45 degrees C for the wild-type protein. Both wild-type and tsHA1 ICP8 were capable of stimulating viral DNA polymerase activity at permissive temperatures. The stimulatory effect of both proteins was lost at 39 degrees C.  相似文献   

20.
A comparative study of single-stranded DNA-binding proteins (SSB-proteins) isolated from chromatin and the extrachromatin fraction of Ehrlich ascites tumour cells was carried out. No differences were found either in SDS-gel electrophoretic mobility or in the single-stranded DNA-binding capacity and stimulation of the replicative synthesis of DNA. However, chromatin SSB-proteins contained 1.4-1.5 times more phosphate than extrachromatin proteins. Both preparations could be phosphorylated in vitro by protein kinase C and cAMP-dependent protein kinase, but the chromatin proteins were phosphorylated in a lesser degree. In parallel with phosphorylation the SSB-proteins displayed a higher binding affinity for ssDNA-cellulose. Phosphorylation can thus be regarded as a means of regulation of the SSB-protein function, in particular, their interaction with chromatin DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号