首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract. Pre-imbibed cocklebur ( Xanthium penn-sylvanicum Wallr.) seeds displayed bimodal germination-temperature responses with two optima at 8 and 33° C. Such germination responses occurred subsequent to bimodal respiration-temperature upsurges at lower and higher temperature regions. At lower temperatures, cocklebur seeds respired predominantly through a cyanide-sensitive cytochrome pathway. A rise in temperature resulted in a marked increase in flux via an alternative pathway, a propyl gallate- (PG) or benzohydroxamic-acid- (BHAM) sensitive pathway, thus resulting in an increase in the ratio of this pathway relative to the cytochrome pathway. Both an increased capacity for the alternative pathway and an increase in the ratio of this pathway to the cytochrome pathway were obtained when pre-imbibed seeds were exposed to either 8 or 33°C for a short period. The effects of low temperature were reduced as the exposure time was prolonged beyond 3d, resulting in a reduction in germination. Neither PG nor BHAM had an inhibitory effect on the chilling-induced germination, but the germination-stimulating effect of high temperatures was less pronounced in the presence of PG or BHAM. At high temperatures, on the other hand, KCN and NaN3 were ineffective or, rather, slightly inhibited germination. It was thus concluded that low and high temperatures exert their germination-stimulating effects by an essentially similar manner which increases fluxes both via the cytochrome pathway and, especially, via the alternative pathway and, as a result, raises the ratio of the latter to the former.  相似文献   

2.
Esashi, Y., Oota, H., Saitoh, H. and Kodama, H. 1985. Lightactions in the germination of cocklebur seeds. III. Effectsof pre-treatment temperature on germination responses to far-redlight and on dark germination in the red light-requiring upperseeds.—J. exp. Bot. 36: 1465-1477. Red light (R) responsiveness in R-requiring upper cocklebur(Xanthium pennsylvanicum Wallr.) seeds changed in differentpatterns during a soaking period at different temperatures.At temperatures above 23°C, the responsiveness increasedand then decreased. At lower temperatures (3–18°C),however, it continued to increase throughout an experimentalperiod. The lower temperatures caused germination in the subsequentdark at 33°C, regained the R responsiveness and acquiredthe dark germinability when subsequently exposed to 8°C,to an extent proportional to the duration of the chilling. Far-red (FR) was inhibitory to germination in an earlier soakingperiod at lower temperatures, but its effect gradually decresed,and finally turned promotive. The negative FR response was repeatedlycontrolled by the following R irradiation. However, the positiveFR response was enhanced by an immediate R irradiation, andFR/R reversibility occurred after the second FR. In contrastto the R responsiveness and dark germinability, the positivegermination response to FR was not induced by soaking at 3°C,in which the growth of the axial tissue as a photoreceptivesite did not occur at all. Similarly, it was not manifestedwhen the seeds soaked at 33°C were subsequently subjectedto 8°C. Key words: Cocklebur seeds, dark germination, far-red light, low temperature, red light, seed germination, Xanthium pennsylvanicum  相似文献   

3.
Non-dormant, lower seeds of cocklebur (Xanthium pensylvanicum Wallr.) germinated with unimodal flush after 20 and 36 h from the start of water imbibition at 33 and 23°C, respectively. At 28°C, however, germination occurred bimodally, the time of each peak coinciding with that at 23 and 33°C. This type of germination behavior was induced even at 33°C, when the seeds were contacted with some osmotica. Further, the application of different osmotica at 28°C caused a rhythmic multimodal germination with a period of about 16 h. It was suggested that an endogenous rhythmicity may be involved in the control of cocklebur seed germination.  相似文献   

4.
Abstract. The mechanism involved in a bimodal germination-temperature response in pre-soaked cocklebur (Xanthium pennsylvanicum Wallr.) seeds was studied with special reference to adenylate metabolism. Exposure to either low (optimal at 8°C) or high (optimal at 34°C) temperature which was effective in inducing the germination of the seeds brought about the accumulation of ATP in them. The ATP level remained unchanged at temperatures around 23°C. Pretreatment with KCN, stimulating germination even at 23°C, subsequently increased the ATP content, total adenylate pool and energy charge (EC) in the axial tissue prior to germination above those of the untreated controls. The lower the treatment temperature, the greater the inhibitory effect of KCN on ATP formation. An increase in germination following an increasing duration of pre-soaking at 8°C was comparable to increasing both the ATP content and total adenylate pool of axes, but not the EC value. Similarly, changes in germination following an increased exposure duration at 8°C correlated with changes in ATP content rather than EC value in the axes. Unlike the case of chilling, an increase in ATP level in response to 34°C was greater in the early period of water imbibition, during which times its germination-stimulating effect appeared more striking than in the later period, and it occurred without a concomitant rise in EC value because of the increased supply of AMP. Such a supply of AMP was reduced in the presence of benzohydroxamic acid or propyl gallale, inhibitors of an alternative respiratory pathway. It was thus concluded that both low temperature, coupled with warm temperature, and high temperature, by itself, can induce seed germination by increasing the ATP level as well as the total adenylate pool, but not the EC value, in the axial tissue. Further, that increases in both the ATP level and the adenylate pool especially are required for seed germination to proceed, probably depending on the activities of the cytochrome and alternative respiration pathways, respectively.  相似文献   

5.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

6.
Thermoperiodism Mechanism in the Germination of Cocklebur Seeds   总被引:1,自引:0,他引:1  
In thermoperiodic germination of secondarily dormant cocklebur(Xanthium pennsylvanicum Wallr.) seeds, the extent of electronflow through the CN-sensitive, cytochrome path and the CN-resistant,alternative path differred in the cool and warm phases. Thecool phase triggered active engagement of the alternative pathduring the subsequent warm phase, and this led to an increasein the ratio of the alternative path flux to the cytochromepath flux. The cool and warm phases had different functionsin adenylate metabolism. The former acted mainly in the productionand accumulation of ATP, whereas the latter supplied ADP and,especially, AMP. Thus an increasing number of sequential thermoperiodiccycles augmented the size of the adenylate pool and the energycharge, both of which may be necessary for germination to takeplace. (Received September 16, 1981; Accepted November 5, 1982)  相似文献   

7.
The photoinduction period of Oenothera biennis L. seed germination was analyzed by varying the photoinduction temperature and by substituting red light pulses for continuous red light. At 24°C, seeds require 36 hours of continuous red light for maximal percent germination. The optimal photoinduction temperature is 32°C, with higher and lower temperatures being strongly inhibitory. A 30 minute exposure to far-red light, given immediately after a red light period of 1 to 36 hours, reduces germination by about 25%. Seeds escape from far-red inhibition with a half-time of 5 to 10 hours, depending on the length of the red exposure that precedes the far-red light. Periodic 15 minute pulses of red light can substitute for continuous red light in stimulating germination. Ted red light pulses, with 6 hours of darkness between successive pulses, cause maximal germination. The response to periodic red light is fully reversible by far-red light. Probit analysis of the periodic light response shows that as the length of the dark periods between successive pulses increases, less incident light is needed to induce germination but the population variance in light sensitivity remains constant. Probit analysis of the temperature response shows that as the photoinduction temperature increases from 16 to 32°C, less incident light is needed to induce germination and the population variance in light sensitivity also increases.  相似文献   

8.
Esashi, Y., Fuwa, Nn Kojima, K. and Hase, S. 1986. Light actionsin the germination of cocklebur seeds. IV. Disappearance ofred light-requirement for the germination of upper seeds subjectto anoxia, chilling, cyanide or azide pretreatmenL—J.exp. Bot. 37: 1652–1662. The effects on the germination of positively photoblastic uppercocklebur (X anthium pennsylvanicum Wallr.) seeds by pretreatingwith anoxia, chilling, cyanide or azide, which stimulates theirdark germination, were examined in relation to light actions.Prior to experiments, seeds were pre-soaked at 23 °C inthe dark for 1 or 2 weeks to remove the pre-existing Pfr. Whenthe prctreatment conditions were suboptimal for germinationinduction, the stimulating effects of the pretreatments on germinationduring a subsequent dark period at 23 °C were manifest onlywhen seeds were irradiated with red light before or after thepretreatment Red light promotion was reversed by blue or far-redlight treatment. However, both prc-chilling for 6 d at 8 °Cand prctreatment with 1· 5 mol m – 3 NaN3 for 2d could induce full germination without red light exposure.On the other hand, both pre-exposure to anoxia for 8 d and pretreatmentwith 30 mol m–3 KCN could induce the dark germinationonly when germination occurred at 33 °C which is known toaugment the ratio of an alternative respiration flux to a cytochromeone. Moreover, the dark germination in response to these inductionswere strongly inhibited by the inhibitors of alternative respiration,propyl gallate and benzohydroxamic acid, applied during a subsequentdark period. It was thus suggested that Pfr has some relationto the operation of two respiration systems of cocklebur seeds,but it is not indispensable to germination of this positivelyphotoblastic seed. Key words: Anoxia, azide, blue light, chilling cyanide, dark germination, far-red light, red light, seed germination, X anthium pennsylvanicum  相似文献   

9.
In negatively photoblastic, lower seeds of cocklebur (Xanthiumpennsylvanicum Wallr.), the respective germination-inhibitingeffects of red (R) and far-red (FR) lights were found in theproximal and near-tip zones of the axial tissues. In contrast,the germination-stimulating effect of R in positively photoblastic,upper cocklebur seeds was manifested in the near-tip zone ofthe axes, the R effect being reversed when FR was given to thezone. The R-sensitive zone in the upper seeds, however, shiftedtowards the more proximal zone as the period of pre-soakingat low temperatures increased. This shift was accompanied bythe ability to germinate in the dark in the upper seeds. In the lower seeds, R inhibited axial growth in the near-tipzone, whereas FR inhibited it in the proximal zone. In contrast,axial growth in the near-tip zone of the upper seeds was promotedby R. In both seeds, light had little effect on the growth ofthe radicle tip. Pre-soaking at low temperatures induced dark-germinationby hastening the axial growth of the upper seeds, thus allowingthe upper seed to resemble the lower one. We therefore proposea hypothesis that explains the diversification of photoresponsesin seed germination. (Received August 7, 1984; Accepted December 24, 1984)  相似文献   

10.
The effect of propyl-gallate (PG) and benzohydroxamic acid (BHAM),inhibitors of cyanide-resistant, alternative respiration path(AP), on germination were examined using after-ripened upperand lower cocklebur (Xanthium pennsylvanicum Wallr.) seeds pre-soakedat 23?C for various periods. Germination was strongly suppressedby PG or BHAM at concentration above 2 mM. However, germinationwas enhanced by low concentrations of PG or BHAM (0.25 or 0.5mM) which reduced some portions of AP operation. Similarly,the high temperature-induced germination of pre-soaked upperseeds was promoted by the same low concentration range of PGor BHAM, in which PG and BHAM were effective only when appliedat the start of high temperature incubation. The inhibitionof germination by C2H4 at high temperature occurred only whenseeds were exposed to C2H4 during the earlier period of hightemperature incubation, and delayed application tended to promotetheir germination, although most of germinated seeds did notexhibit the normal germination behaviour of predominant radicleprotrusion. If the upper seeds had been subjected to a short-timepre-soaking, the inhibition of high temperature-induced germinationby C2H4 was prevented by the low concentrations of PG or BHAM,although the germination restored was mostly an abnormal, predominantlycotyldonary growth, suggesting that the germination inhibitionby C2H4 may be involved in some step of axial growth or in thegrowth of some specific axial zone. The lower concentrationsof PG or BHAM were promotive to the axial growth even at 33?C.Based on these results, the involvement of AP in cocklebur seedgerminaton is discussed in relation to the differential growthof axial and cotyledonary tissues. (Received May 2, 1986; Accepted October 27, 1986)  相似文献   

11.
Daily alternating temperatures or a short exposure to low orhigh temperatures were necessary for the germination of eggplantseeds at the initial stage of after-ripening. But requirementsbecame less strict with the progress of after-ripening, andafter 4 to 8 months of afterripening, germination occurred easilyboth at constant (20 and 25) and daily alternating temperatures(30 for 16hrs and then 20 for 8hrs). With further progress in after-ripening, however, daily alternatingtemperatures or a short exposure to low or high temperaturesbecame again indispensable for attaining a high percentage ofgermination. The progress of after-ripening was greatly influencedby the degree of seed ripening, that is, by the period beforethe seeds were sampled from fruits after anthesis (ripening). The effect of GA on the germination of egg plant seeds varieddepending on the concentration of GA, temperature and the degreeof maturity (ripening and after-ripening) of the seeds. (Received March 8, 1968; )  相似文献   

12.
Summary Seeds of erect and prostrate plants ofTrianthema govindia Buch. ham. ex DC., growing in shade and open respectively, differed significantly in seed weight and percentage germination. Effect of high temperature exposure to these seeds has been studied in view of water depletion, imbibition and seed germination. The seeds of both the types were subjected to temperatures of 40, 50, 60, and 70° C for 24, 48, 96, and 144 hours. The three factors viz., loss of water, water imbibition and germination of seeds were positively correlated to the duration of treatment at different temperatures. A highly significant positive correlation was also observed between moisture depletion and imbibition, and between imbibition and germination. The percentage germination was favoured at 40° C in both the types of seeds and was increased with the increase of treatment duration. However, at higher temperatures (50 and 60° C) the percentage declined while at 70° C the seeds lost their vitality.  相似文献   

13.
In the temperate region temperature is the main factor influencing the germination period of plant species. The purpose of this study was to examine effects of constant and fluctuating temperatures on dormancy and germination under laboratory and field conditions in the three wetland species Lycopus europaeus, Mentha aquatica and Stachys palustris. The results should give indications if the temperature-dependent regulation of dormancy and germination is phylogenetically constrained. Tests for germination requirements showed a minimum temperature for germination of 9 °C in Mentha and 12 °C in Lycopus and Stachys, and a maximum temperature of 33 °C for Lycopus and 36 °C for Mentha and Stachys. Fluctuating temperatures promoted germination in all three species but the amplitude required for high germination (>50%) differed: it was 8 °C in Mentha, 10 °C in Stachys and 14 °C in Lycopus (mean temperature 22 °C). The effect of temperatures on the level of dormancy was examined in the laboratory by imbibing seeds at temperatures between 3 °C and 18 °C for periods between 2 and 28 weeks, as well as by a 30-month burial period, followed by germination tests at various temperatures, in light and darkness. In the laboratory only low temperatures (≤12 °C) relieved primary dormancy in seeds of Lycopus, while in Mentha and Stachys also higher temperatures lead to an increase of germination. Dormancy was only induced in Lycopus seeds after prolonged imbibition at 12 °C in the laboratory. Buried seeds of all species exhibited annual dormancy cycles with lower germination in summer and higher germination from autumn to spring. Exhumed seeds, however, showed considerable differences in periods of germination success. Dormancy was relieved when ambient temperatures were below 12 °C. Ambient temperatures that caused an induction of dormancy varied depending on species and test condition, but even low temperatures (8 °C) were effective. At high test temperatures (25 °C) in light, exhumed seeds of all three species showed high germination throughout the year. The three species showed various differences in the effects of temperatures on dormancy and germination. Similarities in dormancy and germination found among the species are in common with other spring-germinating species occurring in wetlands, so it seems that the temperature dependent regulation of dormancy and germination are related to habitat and not to phylogenetic relatedness.  相似文献   

14.
1. The seeds ofNasturtium palustreDC. do not germinate, eitherin the light or darkness, at various constant temperatures,but require for their full germination a certain period of alow temperature (5°) applied immediately after light irradiation.These results indicate the existance of at least two processes,a light-dependent process and a low temperature-requiring process,in the initiation of germination ofNasturtiumseeds. Experimentalevidence indicated further that the light exposure causes twodifferent processes in the seed germination. 2. When a dark period at 23° was inserted between the lightirradiation and the low temperature treatment the germinationwas suppressed. The inhibitory effect of the inserted dark periodat 23° was eliminated by a short irradiation during thedarkness (light-break). 3. Prolonged exposure ofNasturtium seeds to any concentrationof gibberellin brought about no germination when exposure wasgiven in complete darkness. The germination was promoted onlywhen light irradiation was applied to the seeds. A short applicationof gibberellin at a fairly high concentration was, however,remarkably effective for the germination even in the darkness,and the germination was inhibited as the gibberellin applicationwas lengthened. It was considered that gibberellin could substitutefor the combined effect of light irradiation and low temperaturetreatment to induce the germination of Nasturtium seeds, andthat gibberellin was inhibitive toward the reactions followingthe above treatments which induced the germination (Received October 31, 1996; )  相似文献   

15.
The kinetics of primary dormancy loss were investigated in seeds of horse chestnut (Aesculus hippocastanum L.) harvested in four different years. Freshly collected seeds from 1991 held for up to 1 year at temperatures between 2C and 42C exhibited two peaks in germination (radicle growth), representing a low temperature (2-8°C) and a high temperature response (31-36°C). Germination at 36°C generally occurred within 1 month of sowing, but was never fully expressed in the seedlots investigated. At low temperatures (2-8°C), germination started after around 4 months. Generally, very low levels of termination were observed at intermediate temperatures (11-26°C). Stratification at 6°C prior to germination at warmer temperatures increased the proportion of seeds that germinated, and the rate of germination for all seedlots. Within a harvest, germination percentage (on a probit scale) increased linearly with stratification time and this relationship was independent of germination temperature (16-26°C). However, inter-seasonal differences in the increases in germination capacity following chilling were observed, varying from 0.044 to 0.07 probits d-1 of chilling at 6°C. Increased sensitivity to chilling was associated with warmer temperatures during the period of seed filling. The estimated base temperature for germination, Tb, for newly harvested seeds varied slightly between collection years but was close to 25°C. For all seedlots, Tb decreased by 1°C every 6 d of chilling at 6°C. This systematic reduction in Tb with chilling ultimately facilitated germination at 6°C after dormancy release.  相似文献   

16.
Non-dormant small cocklebur seeds (Xanthium pennsylvanicum Wallr.)are potentiated to germinate, if they are subjected to anaerobiccondition for certain time periods after being sufficientlypre-soaked under aerobic conditions. This is termed "anaerobicinduction" of seed germination. Such induction was slightlyinhibited by CO2 applied during anaerobiosis, but markedly promotedby C2H4 Thus, C2H4 can exert its action even in anaerobiosis,but does not enhance the fermentative CO2 evolution. No actualanaerobic induction occurred when over 1? O2 was present, evenif C2H4 had been applied. Therefore, anaerobic induction seemsto be due to a concerted action of some anaerobically proceedingevents and the anaerobically produced C2H4. (Received May 31, 1976; )  相似文献   

17.
Background: Fire is an important ecological factor in the Cerrado (Brazilian savanna). However, comparative studies on the effect of high temperatures experienced during fires on seed germination of native and invasive grass species are few.

Aims: To assess germination responses to simulated fire temperatures by seeds of invasive and native Cerrado grasses.

Methods: Heat-shock treatments (50 °C, 70 °C, 90 °C, 110 °C, 130 °C or 150 °C) were applied to seeds of 10 species of native and invasive grasses. For each temperature, the seeds were heated in a dry-air flow for 2 or 5 min. This combination of temperatures and exposure times simulated the soil conditions during typical Cerrado fires.

Results: Temperature treatment was significantly related to germination, and the effect varied according to species. Heat shock did not increase germination in either the native or the invasive species. Exposure time was important for only two species, and four species showed a significant increase in mean germination time.

Conclusions: Species showed different tolerances to high temperatures. It was not possible to differentiate the native and invasive grasses only by their tolerance to high temperatures, suggesting that fire alone may not be an efficient management tool to control the invasive species studied here.  相似文献   

18.
Stotzky , G., and Elsie A. Cox . (Central Research Labs., United Fruit Co., Norwood, Mass.) Seed germination studies in Musa. II. Alternating temperature requirement for the germination of Musa balbisiana. Amer. Jour. Bot. 49(7): 763–770. Illus. 1962.—Alternating temperatures were found to be required for the germination of seeds of Musa balbisiana. The temperature differentials optimal for germination in soil are dependent upon both the high and low temperatures, and range from 8–23 C. Germination is maximal when the seeds are held 6–12 hr at the high (27–35 C) and 12–18 hr at the low (12–18 C) temperatures. Some germination can be induced by short exposures to alternating temperatures followed by constant high temperatures, but continuous exposure to alternating temperatures is necessary for maximum germination. Excised embryos develop better at constant than at alternating temperatures, showing that the mechanisms affected by alternating temperatures reside elsewhere in the seed. Alternating temperatures are also required for germination of mechanically scarified seeds, although the temperature differentials are less than those necessary for intact seeds, indicating that the action of alternating temperatures is not on the permeability of the integuments.  相似文献   

19.
Y. Esashi  K. Kotaki  Y. Ohhara 《Planta》1976,129(2):109-112
Summary Germination of non-dormant small cocklebur (Xanthium pennsylvanicum Wallr.) seeds was improved by immersing them in water, suggesting that during their germination endogenous germination inhibitors are leached out. However, the same effect could be obtained by the quasi-anaerobic pre-incubation of the seeds. When seeds were fully imbibed, moreover, water immersion could no longer potentiate them to germinate, and only anaerobiosis increased the germination potential, thus raising a question against the inhibitor hypothesis of seed dormancy.  相似文献   

20.
Ethylene Production in Pea and Cocklebur Seeds of Differing Vigour   总被引:1,自引:0,他引:1  
Relationships between seed vigour and ethylene (C2H4) productionwere studied using C2H4-responsive fatty cocklebur seeds (Xanthiumpennsyhanicum Wallr.) and C2H4-insensitive starchy pea seeds(Pisum sativum L. cv. Alaska), which had been harvested in differentyears and subjected to different storage conditions. In bothspecies, the seeds with the highest vigour evolved the largestamounts of C2H4 during a period of water imbibition. The reductionof C2H4 production in cocklebur seeds occurred concomitantlywith the reduction in the growth potentials of both axial andcotyledonary tissues. Similarly, the activity of ACC-C2H4 conversionincreased with soaking, and was greater in seeds of high vigourcompared with those of low vigour. However, the change in ACCcontent in pea seeds differed from that in cocklebur seeds.That is, pea seeds with high vigour accumulated less ACC duringan imbibition period than those with low vigour. From theseresults it was suggested that the inferior C2H4 production bylow vigour pea seeds is mainly attributable to low ACC-C2H4conversion, whereas that by low vigour cocklebur seeds is dueto the shortage of ACC supply in addition to the reduced ACC-C2H4conversion. However, germination of deteriorated cocklebur seedswas not restored by exposure to ACC or C2H4, suggesting thatthe loss of seed vigour reduces the responsiveness of seedsto C2H4 as well as C2H4 production. Key words: Pea, cocklebur, seed vigour, ethylene production, 1-aminocyclopropane-1-carboxylic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号