首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported about a new Saccharomyces cerevisiae mutation, hsm2-1, that results in increase of both spontaneous and UV-induced mutation frequencies but does not alter UV-sensitivity. Now HSM2 gene has been genetically and physically mapped and identified as a gene previously characterized as HMO1, a yeast homologue of human high mobility group genes HMG1/2. We found that hsm2 mutant is slightly deficient in plasmid-borne mismatch repair. We tested UV-induced mutagenesis in double mutants carrying hsm2-1 mutation and a mutation in a gene of principal damaged DNA repair pathways (rad2 and rev3) or in a mismatch repair gene (pms1 and recently characterized in our laboratory hsm3). The frequency of UV-induced mutations in hsm2 rev3 was not altered in comparison with single rev3 mutant. In contrast, the interaction of hsm2-1 with rad2 and pms1 was characterized by an increased frequency of UV-induced mutations in comparison with single rad2 and pms1 mutants. The UV-induced mutation frequency in double hsm2 hsm3 mutant was lower than in the single hsm2 and hsm3 mutants. The role of the HSM2 gene product in control of mutagenesis is discussed.  相似文献   

2.
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, we find that MutS forms foci independent of mismatch detection at sites of replication (i.e. the replisome). These MutS foci are directed to the replisome by DnaN clamp zones that aid mismatch detection by targeting the search to nascent DNA. Following mismatch detection, MutS disengages from the replisome, facilitating repair. We tested the functional importance of DnaN‐mediated mismatch detection for MMR, and found that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by increasing MutS concentration within the cell, indicating a secondary mode of detection in vivo whereby MutS directly finds mismatches without associating with the replisome. Overall, our results provide new insight into the mechanism by which DnaN couples mismatch recognition to DNA replication in living cells.  相似文献   

3.
Yang H  Yung M  Sikavi C  Miller JH 《DNA Repair》2011,10(11):1121-1130
DNA mismatch repair (MMR) systems can be classified as either MutH-dependent or MutH-independent. In bacteria, extensive studies have been conducted with the MutH-dependent MMR in Escherichia coli and its close relatives. The picture of MutH-independent MMR in other bacteria is less clear, as MMR components other than MutS and MutL have not been identified in the majority of bacteria. Bacillus anthracis is one of the MutH-less Gram(+) bacteria in the phylum of Firmicutes. We used papillation as a tool to search for B. anthracis new mutator strains and identified a spontaneous mutator that carries a minitransposon insertion in the BAS4289 locus. The mutational frequency and specificity exhibited in this mutant were comparable to that of MMR-deficient strains with knockouts of mutL or mutS. It retained a similar UV sensitivity profile as that of the wild type. BAS4289 encodes a putative DNA helicase RecD2 that shares 30% sequence identity with Deinococcus radiodurans RecD2, a well characterized superfamily 1B helicase whose homologs are widely present in Firmicutes complete genomes. We demonstrated that the N-terminal region of RecD2, a unique sequence extension used to distinguish RecD2 from RecD1, was important for B. anthracis RecD2, as mutations in the N-terminal conserved motifs affected its DNA repair function. This is the first report of a RecD2 helicase being associated with MMR. RecD2 and our recently described YycJ protein are likely to be two additional components in the B. anthracis MutH-independent MMR system.  相似文献   

4.
Single nucleotide polymorphisms (SNPs) are increasingly recognized as important diagnostic markers for the detection and differentiation of Bacillus anthracis. The use of SNP markers for identifying B. anthracis DNA in environmental samples containing genetically similar bacteria requires the ability to amplify and detect DNA with single nucleotide specificity. We designed a TaqMan mismatch amplification mutation assay (TaqMAMA) around a SNP in the plcR gene of B. anthracis. The assay permits specific, low-level detection (25 fg DNA) of this B. anthracis-specific SNP, even in the presence of environmental DNA extracts containing a 20,000-fold excess of the alternate allele. We anticipate that the ability to selectively amplify and detect low copy number DNAs with single nucleotide specificity will represent a valuable tool in the arena of biodefense and microbial forensics.  相似文献   

5.
DNA mismatch repair (MMR) in mammalian cells or Escherichia coli dam mutants increases the cytotoxic effects of cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We found that, unlike wildtype, the dnaE486 (alpha catalytic subunit of DNA polymerase III holoenzyme) mutant, and a DnaX (clamp loader subunits) over-producer, are sensitive to cisplatin but resistant to MNNG at the permissive temperature for growth. Survival of dam-13 dnaN159 (beta sliding clamp) bacteria to cisplatin was significantly less than dam cells, suggesting decreased MMR, which may be due to reduced MutS-beta clamp interaction. We also found an elevated spontaneous mutant frequency to rifampicin resistance in dnaE486 (10-fold), dnaN159 (35-fold) and dnaX36 (10-fold) strains. The mutation spectrum in the dnaN159 strain was consistent with increased SOS induction and not indicative of MMR deficiency.  相似文献   

6.
Achondroplasia is the most common form of dwarfism and has an incidence of approximately 1/7500. In more than 97% of cases, it is caused by a recurrent point mutation, a G to A substitution at nucleotide position 1138 (G1138A) of the fibroblast growth factor receptor 3 gene. Although this is an autosomal dominant condition, more than 90% of all mutations occur sporadically making this one of the most mutagenic sites in the human genome. The reasons for the high spontaneous G1138A mutation rate are not known. This investigation was performed by developing a simple and rapid semi-quantitative allele specific PCR based assay capable of reliably detecting more than 25 mutant G1138A copies in a pool of 300 000 wild type molecules. Using this assay, the G1138A mutation frequency was measured in cell lines deficient in mismatch repair (LoVo, SW48) and comparing it with controls. No differences were found in the frequency of this point mutation between the mismatch repair deficient and wild type cell lines.__________From Genetika, Vol. 41, No. 8, 2005, pp. 1137–1141.Original English Text Copyright © 2005 by Grewal.This article was submitted by the author in English.  相似文献   

7.
Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1?, pXO2?), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system was used to sequentially delete the genes encoding six proteases (InhA1, InhA2, camelysin, TasA, NprB, and MmpZ). The role of each protease in degradation of the B. anthracis toxin components and ALO was demonstrated. Levels of the anthrax toxin components and ALO in the supernatant of the sporulation defective, pXO1? A35HMS mutant strain deleted for the six proteases were significantly increased and remained stable over 24 h. A pXO1-free variant of this six-protease mutant strain, designated BH460, provides an improved host strain for the preparation of recombinant proteins. As an example, BH460 was used to produce recombinant EF, which previously has been difficult to obtain from B. anthracis. The EF protein produced from BH460 had the highest in vivo potency of any EF previously purified from B. anthracis or Escherichia coli hosts. BH460 is recommended as an effective host strain for recombinant protein production, typically yielding greater than 10mg pure protein per liter of culture.  相似文献   

8.
We have studied DNA recombination between 513 bp tandem direct repeats present in a kanamycin resistance gene inserted in the Bacillus subtilis chromosome. Tandem repeat deletion was not significantly affected by a recA mutation. However, recombination was stimulated by mutations in genes encoding replication proteins, including the primosomal proteins DnaB, DnaD and the DnaG primase, the putative DNA polymerase III subunits PolC, DnaN and DnaX, as well as the DNA polymerase DnaE. Hyper-recombination was found to be dependent on RecA in the dnaE, dnaN and dnaX mutants, whereas the dnaG and dnaD mutants stimulated recombination independently of RecA. Altogether, these data show that both RecA-dependent and RecA-independent mechanisms contribute to recombination between tandem repeats in B. subtilis and that both types of recombination are stimulated by replication mutations.  相似文献   

9.
The disruption of ung, the unique uracil-DNA-glycosylase-encoding gene in Bacillus subtilis, slightly increased the spontaneous mutation frequency to rifampin resistance (Rif(r)), suggesting that additional repair pathways counteract the mutagenic effects of uracil in this microorganism. An alternative excision repair pathway is involved in this process, as the loss of YwqL, a putative endonuclease V homolog, significantly increased the mutation frequency of the ung null mutant, suggesting that Ung and YwqL both reduce the mutagenic effects of base deamination. Consistent with this notion, sodium bisulfite (SB) increased the Rif(r) mutation frequency of the single ung and double ung ywqL strains, and the absence of Ung and/or YwqL decreased the ability of B. subtilis to eliminate uracil from DNA. Interestingly, the Rif(r) mutation frequency of single ung and mutSL (mismatch repair [MMR] system) mutants was dramatically increased in a ung knockout strain that was also deficient in MutSL, suggesting that the MMR pathway also counteracts the mutagenic effects of uracil. Since the mutation frequency of the ung mutSL strain was significantly increased by SB, in addition to Ung, the mutagenic effects promoted by base deamination in growing B. subtilis cells are prevented not only by YwqL but also by MMR. Importantly, in nondividing cells of B. subtilis, the accumulations of mutations in three chromosomal alleles were significantly diminished following the disruption of ung and ywqL. Thus, under conditions of nutritional stress, the processing of deaminated bases in B. subtilis may normally occur in an error-prone manner to promote adaptive mutagenesis.  相似文献   

10.
Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization process, the frameshift mutation rate could vary up to four times among different chromosomal contexts. Furthermore, the mismatch repair efficiency could vary up to eight times when compared at different chromosomal locations, indicating that detection and/or repair of frameshift events also depends on the chromosomal context. Also, GATC sequences have been proved to be essential for the correct functioning of the E. coli mismatch repair system. Using bacteriophage heteroduplexes molecules it has been shown that GATC influence the mismatch repair efficiency in a distance- and number-dependent manner, being almost nonfunctional when GATC sequences are located at 1 kb or more from the mutation site. Interestingly, we found that in E. coli genomic DNA the mismatch repair system can efficiently function even if the nearest GATC sequence is located more than 2 kb away from the mutation site. The results presented in this work show that even though frameshift mutations can be efficiently generated and/or repaired anywhere in the genome, these processes can be modulated by the chromosomal context that surrounds the mutation site.  相似文献   

11.
In Escherichia coli, an interaction between the replication initiator DnaA and the sliding clamp protein, the beta subunit (DnaN) of DNA polymerase III, is required to regulate the chromosomal replication cycle. We report here that colony formation by, and cell division of, the temperature (42 degrees C)-sensitive dnaN59 mutant are inhibited at 34-35 degrees C when DnaA is moderately (4-to 8-fold ) overexpressed, although chromosomal replication and the beta subunit-dependent regulation of DnaA activity are not significantly inhibited. Immunoblotting analysis revealed that the beta subunit is abundant (present at a level of about 5000 dimers per cell) at 34 degrees C, and its concentration per unit cell volume was practically unaffected in the dnaN59 mutant by the overexpression of DnaA. The dnaN mutant cells that overexpress DnaA become filamentous at 34 degrees C via an sfiA-independent pathway, different from that activated by the SOS response. This filamentation is accompanied by inhibition of nucleoid partition and FtsZ ring formation. In the dnaN59 mutant, oversupply of DnaA may disturb the coordinated action of cell cycle-regulating molecules, thus leading to the inhibition of these events.  相似文献   

12.
Chromosomal DNA fragment which complemented rec223 mutation of Bacillus subtilis was cloned. Introduction of one copy of the cloned gene into the cells of the rec mutant restored both normal activity for DNA damages repair after mitomycin C action and recombination proficiency. Using multicopy vector led to no formation of recombinants, which was probably connected with overproduction of rec223 gene protein product in Bacillus subtilis cells.  相似文献   

13.
炭疽芽孢杆菌A16R株eag基因缺失突变株构建   总被引:1,自引:0,他引:1  
【目的】构建炭疽芽孢杆菌A16R株eag基因缺失突变株, 为研究eag基因的功能奠定了基础。【方法】本研究以我国人用炭疽杆菌活疫苗A16R株中eag基因为目的缺失基因,根据炭疽芽孢杆菌Ames株基因组序列,利用软件设计了扩增上下游同源臂以及抗性基因引物,构建了重组质粒,将该重组质粒电击转入炭疽杆菌A16R感受态细胞中,利用同源重组原理筛选到炭疽杆菌A16R株eag基因缺失突变株。在分子水平及蛋白质组学方面对基因缺失突变株进行验证。【结果】成功构建了重组质粒,经同源重组后获得eag基因缺失突变株。PCR鉴定表明目的基因已经丢失;SDS PAGE表明野生株与突变株在93 KDa处有差异蛋白条带,经质谱鉴定分析该条带为目的基因所表达的EA1蛋白;双向电泳结果显示突变株与野生株比较明显缺失3个蛋白点,经质谱分析后确定这3个点都是EA1蛋白。【结论】成功获得炭疽芽孢杆菌A16R株eag基因缺失突变株,为深入研究eag基因的功能奠定了基础,同时也为炭疽芽孢杆菌重要基因功能的研究建立了一个良好的技术平台。  相似文献   

14.
Grewal RP 《Genetika》2005,41(8):1137-1141
Achondroplasia is the most common form of dwarfism and has an incidence of approximately 1/7500. In more than 97% of cases, it is caused by a recurrent point mutation, a G to A substitution at nucleotide position 1138 (G1138A) of the fibroblast growth factor receptor 3 gene. Although this is an autosomal dominant condition, more than 90% of all mutations occur sporadically making this one of the most mutagenic sites in the human genome. The reasons for the high spontaneous G1138A mutation rate are not known. This investigation was performed by developing a simple and rapid semi-quantitative allele specific PCR based assay capable of reliably detecting more than 25 mutant G1138A copies in a pool of 300 000 wild type molecules. Using this assay, the G1138A mutation frequency was measured in cell lines deficient in mismatch repair (LoVo, SW48) and comparing it with controls. No differences were found in the frequency of this point mutation between the mismatch repair deficient and wild type cell lines.  相似文献   

15.
一种KBMA炭疽疫苗候选株的研制   总被引:1,自引:1,他引:0  
炭疽病是由炭疽芽胞杆菌Bacillus anthracis引起的一种人畜共患传染病,严重影响着人类的健康。近年来在细菌疫苗的研究中发现一种特殊的现象:细菌被杀死后,体内的代谢活性却仍然维持 (Killed but metabolically active,KBMA)。此发现为炭疽新型疫苗候选株的研制提供了新思路。先通过同源重组的方法,利用pMAD质粒和Cre-loxP重组酶系统完成对缺失两个毒性大质粒的炭疽芽胞杆菌减毒株AP422的uvrAB基因的敲除,得到AP422△uvrAB菌株,然后通过光化学处理 (包括长波紫外光的照射和8-甲氧基补骨脂素处理),使炭疽芽胞杆菌AP422△uvrAB失去繁殖能力。利用四氮唑化合物MTS检测其代谢活性,表明光化学处理杀死后的炭疽芽胞杆菌AP422△uvrAB在至少4 h内维持一个很高的代谢活性水平,即具备典型的KBMA特性。炭疽杆菌AP422 △uvrAB的KBMA菌株的成功研制为我们提供了一种新型炭疽疫苗候选株。  相似文献   

16.
H. T. Tran  D. A. Gordenin    M. A. Resnick 《Genetics》1996,143(4):1579-1587
We have investigated the effects of mismatch repair on 1- to 61-bp deletions in the yeast Saccharomyces cerevisiae. The deletions are likely to involve unpaired loop intermediates resulting from DNA polymerase slippage. The mutator effects of mutations in the DNA polymerase δ (POL3) gene and the recombinational repair RAD52 gene were studied in combination with mismatch repair defects. The pol3-t mutation increased up to 1000-fold the rate of extended (7-61 bp) but not of 1-bp deletions. In a rad52 null mutant only the 1-bp deletions were increased (12-fold). The mismatch repair mutations pms1, msh2 and msh3 did not affect 31- and 61-bp deletions in the pol3-t but increased the rates of 7- and 1-bp deletions. We propose that loops less than or equal to seven bases generated during replication are subject to mismatch repair by the PMS1, MSH2, MSH3 system and that it cannot act on loops >=31 bases. In contrast to the pol3-t, the enhancement of 1-bp deletions in a rad52 mutant is not altered by a pms1 mutation. Thus, mismatch repair appears to be specific to errors of DNA synthesis generated during semiconservative replication.  相似文献   

17.
Escherichia coli mutants deficient in deoxyuridine triphosphatase.   总被引:15,自引:12,他引:3       下载免费PDF全文
Mutants deficient in deoxyuridine triphosphatase (dUTPase) were identified by enzyme assays of randomly chosen heavily mutagenized clones. Five mutants of independent origin were obtained. One mutant produced a thermolabile enzyme, and it was presumed to have a mutation in the structural gene for dUTPase, designated dut. The most deficient mutant had the following associated phenotypes: less than 1% of parental dUTPase activity, prolonged generation time, increased sensitivity to 5'-fluorodeoxyuridine, increased rate of spontaneous mutation, increased rate of recombination (hyper-Rec), an inhibition of growth in the presence of 2 mM uracil, and a decreased ability to support the growth of phage P1 (but not T4 or lambda). This mutation also appeared to be incompatible with pyrE mutations. A revertant selected by its faster growth had regained dUTPase activity and lost its hyper-Rec phenotype. Many of the properties of the dut mutants are compatible with their presumed increased incorporation of uracil into DNA and the subsequent transient breakage of the DNA by excision repair.  相似文献   

18.
Bacillus anthracis, a gram-positive, spore-forming bacterium, is the etiological agent of anthrax. It belongs to the Bacillus cereus group, which also contains Bacillus cereus and Bacillus thuringiensis. Most B. anthracis strains are sensitive to phage gamma, but most B. cereus and B. thuringiensis strains are resistant to the lytic action of phage gamma. Here, we report the identification of a protein involved in the bacterial receptor for the gamma phage, which we term GamR (Gamma phage receptor). It is an LPXTG protein (BA3367, BAS3121) and is anchored by the sortase A. A B. anthracis sortase A mutant is not as sensitive as the parental strain nor as the sortase B and sortase C mutants, whereas the GamR mutant is resistant to the lytic action of the phage. Electron microscopy reveals the binding of the phage to the surface of the parental strain and its absence from the GamR mutant. Spontaneous B. anthracis mutants resistant to the phage harbor mutations in the gene encoding the GamR protein. A B. cereus strain that is sensitive to the phage possesses a protein similar (89% identity) to GamR. B. thuringiensis 97-27, a strain which, by sequence analysis, is predicted to harbor a GamR-like protein, is resistant to the phage but nevertheless displays phage binding.  相似文献   

19.
The Salmonella typhimurium and Escherichia coli MutS protein is one of several methyl-directed mismatch repair proteins that act together to correct replication errors. MutS is homologous to the Streptococcus pneumoniae HexA mismatch repair protein and to the Duc1 and Rep1 proteins of human and mouse. Homology between the deduced amino acid sequence of both MutS and HexA, and the type A nucleotide binding site consensus sequence, suggested that ATP binding and hydrolysis play a role in their mismatch repair functions. We found that MutS does indeed weakly hydrolyze ATP to ADP and Pi, with a Km of 6 microM and kcat of 0.26. To show that this activity is intrinsic to MutS, we made a site-directed mutation, which resulted in the invariant lysine of the nucleotide binding consensus sequence being changed to an alanine. The mutant MutS allele was unable to complement a mutS::Tn10 mutation in vivo, and was dominant over wild type when present in high copy number. The purified mutant protein had reduced ATPase activity, with the Km affected more severely than the kcat. Like the wild type MutS protein, the mutant protein is able to bind heteroduplex DNA specifically, but the mutant protein does so with a reduced affinity.  相似文献   

20.
Microsatellites are DNA elements composed of short tandem repeats of 1-5bp. These sequences are particularly prone to frameshift mutation by insertion-deletion loop formation during replication. The mismatch repair system is responsible for correcting these replication errors, and microsatellite mutation rates are significantly elevated in the absence of mismatch repair. We have investigated the effect of varying the number of repeats in a (CA)n microsatellite on mutation rates in cultured mammalian cells proficient or deficient in mismatch repair. We have also compared the relative rates of single-repeat insertions and deletions in these cells. Two plasmid vectors were constructed for each repeat unit number (n=8, 17, and 30), such that the microsatellites, placed upstream of a bacterial neomycin resistance gene (neo), disrupted the reading frame of the gene in the (-1) or (+1) direction. Plasmids were introduced separately into the cells, where they integrated into the cellular genome. Mutation rates were determined by selection of clones with frameshift mutations in the microsatellite that restored the reading frame of the neo gene. We found that mutation rates were significantly higher for (CA)17 and (CA)30 tracts than for (CA)8 tracts in both mismatch repair proficient (mouse) and deficient (human) cells. A mutational bias favoring insertions was generally observed. In both (CA)17 and (CA)30 tracts, single-repeat insertion rates were higher than single-repeat deletion rates with or without mismatch repair; deletions of multiple repeat units (> or =8bp) were observed in these tracts, where as deletions this large were not found in the (CA)8 tract. Single-repeat mutations of both types were made at similar rates in (CA)8 tracts in human mismatch repair deficient (MMR-) cells, but single-repeat insertion rates were higher than single-repeat deletion rates in mouse mismatch repair proficient (MMR+) cells. Results of these direct studies on microsatellite mutations in cultured cells should be useful for refinement of mathematical models for microsatellite evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号