首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E1 component (pyruvate decarboxylase) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus is a heterotetramer (alpha2beta2) of E1alpha and E1beta polypeptide chains. The domain structure of the E1alpha and E1beta chains, and the protein-protein interactions involved in assembly, have been studied by means of limited proteolysis. It appears that there may be two conformers of E1alpha in the E1 heterotetramer, one being more susceptible to proteolysis than the other. A highly conserved region in E1alpha, part of a surface loop at the entrance to the active site, is the most susceptible to cleavage in E1 (alpha2beta2). As a result, the oxidative decarboxylation of pyruvate catalysed by E1 in the presence of dichlorophenol indophenol as an artificial electron acceptor is markedly enhanced, but the reductive acetylation of a free lipoyl domain is unchanged. The parameters of the interaction between cleaved E1 and the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase E2 component are identical to those of the wild-type E1. However, a pyruvate dehydrogenase complex assembled in vitro with cleaved E1p exhibits a markedly lower overall catalytic activity than that assembled with untreated E1. This implies that active site coupling between the E1 and E2 components has been impaired. This has important implications for the way in which a tethered lipoyl domain can interact with E1 in the assembled complex.  相似文献   

2.
Fries M  Jung HI  Perham RN 《Biochemistry》2003,42(23):6996-7002
Pyruvate decarboxylase (E1) catalyzes the first two reactions of the four involved in oxidative decarboxylation of pyruvate by the pyruvate dehydrogenase (PDH) multienzyme complex. It requires thiamin diphosphate to bring about the decarboxylation of pyruvate, which is followed by the reductive acetylation of a lipoyl group covalently bound to the N(6) amino group of a lysine residue in the second catalytic component, a dihydrolipoyl acetyltransferase (E2). Replacement of two histidine residues in the E1alpha and E1beta chains of the heterotetrameric E1 (alpha(2)beta(2)) component of the PDH complex of Bacillus stearothermophilus, considered possible proton donors at the active site, was carried out. Subsequent characterization of the mutants permitted different roles to be assigned to these two particular residues in the reaction catalyzed by E1: E1alpha His271 to stabilize the dianion formed during decarboxylation of the 2-oxo acid and E1beta His128 to provide the proton required to protonate the incoming dithiolane ring in the subsequent reductive acetylation of the lipoyl goup. On the basis of these and other results from a separate investigation into the roles of individual residues in a loop region in the E1alpha chain close to the active site of E1 [Fries, M., Chauhan, H. J., Domingo, G. J., Jung, H., and Perham, R. N. (2002) Eur. J. Biochem. 270, 861-870] together with work from other laboratories, a detailed mechanism for the E1 reaction can be formulated.  相似文献   

3.
Pyruvate dehydrogenase kinase (PDK) isoforms 2 and 3 were produced via co-expression with the chaperonins GroEL and GroES and purified with high specific activities in affinity tag-free forms. By using human components, we have evaluated how binding to the lipoyl domains of the dihydrolipoyl acetyltransferase (E2) produces the predominant changes in the rates of phosphorylation of the pyruvate dehydrogenase (E1) component by PDK2 and PDK3. E2 assembles as a 60-mer via its C-terminal domain and has mobile connections to an E1-binding domain and then two lipoyl domains, L2 and L1 at the N terminus. PDK3 was activated 17-fold by E2; the majority of this activation was facilitated by the free L2 domain (half-maximal activation at 3.3 microm L2). The direct activation of PDK3 by the L2 domain resulted in a 12.8-fold increase in k(cat) along with about a 2-fold decrease in the K(m) of PDK3 for E1. PDK3 was poorly inhibited by pyruvate or dichloroacetate (DCA). PDK3 activity was stimulated upon reductive acetylation of L1 and L2 when full activation of PDK3 by E2 was avoided (e.g. using free lipoyl domains or ADP-inhibited E2-activated PDK3). In marked contrast, PDK2 was not responsive to free lipoyl domains, but the E2-60-mer enhanced PDK2 activity by 10-fold. E2 activation of PDK2 resulted in a greatly enhanced sensitivity to inhibition by pyruvate or DCA; pyruvate was effective at significantly lower levels than DCA. E2-activated PDK2 activity was stimulated >/=3-fold by reductive acetylation of E2; stimulated PDK2 retained high sensitivity to inhibition by ADP and DCA. Thus, PDK3 is directly activated by the L2 domain, and fully activated PDK3 is relatively insensitive to feed-forward (pyruvate) and feed-back (acetylating) effectors. PDK2 was activated only by assembled E2, and this activated state beget high responsiveness to those effectors.  相似文献   

4.
The lipoyl domains of the dihydrolipoyl acyltransferase (E2p, E2o) components of the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes are specifically recognised by their cognate 2-oxo acid decarboxylase (E1p, E1o). A prominent surface loop links the first and second beta-strands in all lipoyl domains, close in space to the lipoyl-lysine beta-turn. This loop was subjected to various modifications by directed mutagenesis of a sub-gene encoding a lipoyl domain of Escherichia coli E2p. Deletion of the loop (four residues) rendered the domain incapable of reductive acetylation by E. coli E1p in the presence of pyruvate, but insertion of a new loop (six residues) corresponding to that in the E2o lipoyl domain partly restored this ability, albeit with a much lower rate. However, the modified domain remained unable to undergo reductive succinylation by E1o in the presence of 2-oxoglutarate. Additional exchange of the two residues on the C-terminal side of the loop (V14A, E15T) had no effect. Insertion of a different four-residue loop also restored a limited ability to undergo reductive acetylation, but still significantly less than that of the wild-type domain. Exchanging the residue on the N-terminal side of the lipoyl-lysine beta-turn in the E2p and E2o domains (G39T), both singly and in conjunction with the loop exchange, had no effect on the ability of the E2p domain to be reductively acetylated but did confer a slight increase in susceptibility to reductive succinylation. All mutant E2p domains, apart from that with the loop deletion (LD), were readily lipoylated in vitro by E. coli lipoate protein ligase A; the E2p LD mutant could be lipoylated only at a significantly lower rate. Likewise, this domain exhibited 1D and 2D NMR spectra characteristic of a partially folded protein, whereas the spectra of mutants with modified loops were similar to those of the wild-type domain. The surface loop is evidently important to the structural integrity of the domain and may help to stabilize the thioester bond linking the acyl group to the reduced lipoyl-lysine swinging arm as part of the catalytic mechanism. Recognition of the lipoyl domain by its partner E1 appears to be a complex process and not attributable to any single determinant on the domain.  相似文献   

5.
Plasmids were constructed for overexpression of the Escherichia coli dihydrolipoamide acetyltransferase (1-lip E2, with a single hybrid lipoyl domain per subunit) and dihydrolipoamide dehydrogenase (E3). A purification protocol is presented that yields homogeneous recombinant 1-lip E2 and E3 proteins. The hybrid lipoyl domain was also expressed independently. Masses of 45,953+/-73Da (1-lip E2), 50,528+/-5.5Da (apo-E3), 51,266+/-48Da (E3 including FAD), and 8982+/-4.0 (lipoyl domain) were determined by MALDI-TOF mass spectrometry. The purified 1-lip E2 and E3 proteins were functionally active according to the overall PDHc activity measurement. The lipoyl domain was fully acetylated after just 30 s of incubation with E1 and pyruvate. The mass of the acetylated lipoyl domain is 9019+/-2Da according to MALDI-TOF mass spectrometry. Treatment of the 1-lip E2 subunit with trypsin resulted in the appearance of the lipoyl domain with a mass of 10,112+/-3Da. When preincubated with E1 and pyruvate, this tryptic fragment was acetylated according to the mass increase. MALDI-TOF mass spectrometry was thus demonstrated to be a fast and precise method for studying the reductive acetylation of the recombinant 1-lip E2 subunit by E1 and pyruvate.  相似文献   

6.
Pyruvate dehydrogenase (E1), an alpha(2)beta(2) tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of betaW135, alphaP188, alphaM181, alphaH15, and alphaR349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: betaW135 is in the center of the hydrophobic interaction between beta and beta' subunits; alphaP188 and alphaM181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alphaH15 is necessary for the organization of the N-terminus of alpha and alpha' subunits; and alphaR349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.  相似文献   

7.
Lipoamide and a peptide, Thr-Val-Glu-Gly-Asp-Lys-Ala-Ser-Met-Glu lipoylated on the N6-amino group of the lysine residue, were tested as substrates for reductive acetylation by the pyruvate decarboxylase (E1p) component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The peptide has the same amino acid sequence as that surrounding the three lipoyllysine residues in the lipoate acetyltransferase (E2p) component of the native enzyme complex. Lipoamide was shown to be a very poor substrate, with a Km much higher than 4 mM and a value of kcat/Km of 1.5 M-1.s-1. Under similar conditions, the three E2p lipoyl domains, excised from the pyruvate dehydrogenase complex by treatment with Staphylococcus aureus V8 proteinase, could be reductively acetylated by E1p much more readily, with a typical Km of approximately 26 microM and a typical kcat of approximately 0.8 s-1. The value of kcat/Km for the lipoyl domains, approximately 3.0 x 10(4) M-1.s-1, is about 20,000 times higher than that for lipoamide as a substrate. This indicates the great improvement in the effectiveness of lipoic acid as a substrate for E1p that accompanies the attachment of the lipoyl group to a protein domain. The free E2o lipoyl domain was similarly found to be capable of being reductively succinylated by the 2-oxoglutarate decarboxylase (E1o) component of the 2-oxoglutarate dehydrogenase complex of E. coli. The 2-oxo acid dehydrogenase complexes are specific for their particular 2-oxo acid substrates. The specificity of the E1 components was found to extend also to the lipoyl domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Reductive acetylation of the lipoyl domain (E2plip) of the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli is catalysed specifically by its partner pyruvate decarboxylase (E1p), and no productive interaction occurs with the analogous 2-oxoglutarate decarboxylase (E1o) of the 2-oxoglutarate dehydrogenase complex. Residues in the lipoyl-lysine beta-turn region of the unlipoylated E2plip domain (E2plip(apo)) undergo significant changes in both chemical shift and transverse relaxation time (T(2)) in the presence of E1p but not E1o. Residue Gly11, in a prominent surface loop between beta-strands 1 and 2 in the E2plip domain, was also observed to undergo a significant change in chemical shift. Addition of pyruvate to the mixture of E2plip(apo) and E1p caused larger changes in chemical shift and the appearance of multiple cross-peaks for certain residues, suggesting that the domain was experiencing more than one type of interaction. Residues in both beta-strands 4 and 5, together with those in the prominent surface loop and the following beta-strand 2, appeared to be interacting with E1p, as did a small patch of residues centred around Glu31. The values of T(2) across the polypeptide chain backbone were also lower than in the presence of E1p alone, suggesting that E2plip(apo) binds more tightly after the addition of pyruvate. The lipoylated domain (E2plip(holo)) also exhibited significant changes in chemical shift and decreases in the overall T(2) relaxation times in the presence of E1p, the residues principally affected being restricted to the half of the domain that contains the lipoyl-lysine (Lys41) residue. In addition, small chemical shift changes and a general drop in T(2) times in the presence of E1o were observed, indicating that E2plip(holo) can interact, weakly but non-productively, with E1o. It is evident that recognition of the protein domain is the ultimate determinant of whether reductive acetylation of the lipoyl group occurs, and that this is ensured by a mosaic of interactions with the Elp.  相似文献   

9.
Limited proteolysis of the pyruvate decarboxylase (E1, alpha2beta2) component of the pyruvate dehydrogenase (PDH) multienzyme complex of Bacillus stearothermophilus has indicated the importance for catalysis of a site (Tyr281-Arg282) in the E1alpha subunit (Chauhan, H.J., Domingo, G.J., Jung, H.-I. & Perham, R.N. (2000) Eur. J. Biochem. 267, 7158-7169). This site appears to be conserved in the alpha-subunit of heterotetrameric E1s and multiple sequence alignments suggest that there are additional conserved amino-acid residues in this region, part of a common pattern with the consensus sequence -YR-H-D-YR-DE-. This region lies about 50 amino acids on the C-terminal side of a 30-residue motif previously recognized as involved in binding thiamin diphosphate (ThDP) in all ThDP-dependent enzymes. The role of individual residues in this set of conserved amino acids in the E1alpha chain was investigated by means of site-directed mutagenesis. We propose that particular residues are involved in: (a) binding the 2-oxo acid substrate, (b) decarboxylation of the 2-oxo acid and reductive acetylation of the tethered lipoyl domain in the PDH complex, (c) an "open-close" mechanism of the active site, and (d) phosphorylation by the E1-specific kinase (in eukaryotic PDH and branched chain 2-oxo acid dehydrogenase complexes).  相似文献   

10.
Two-dimensional (15)N-heteronuclear single-quantum coherence (HSQC) NMR studies with a di-domain (lipoyl domain+ linker+ peripheral subunit-binding domain) of the dihydrolipoyl acetyltransferase (E2) component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus allowed a molecular comparison of the need for lipoic acid to be covalently attached to the lipoyl domain in order to undergo reductive acetylation by the pyruvate decarboxylase (E1) component, in contrast with the ability of free lipoic acid to serve as substrate for the dihydrolipoyl dehydrogenase (E3) component. Tethering the lipoyl domain to the peripheral subunit-binding domain in a complex with E1 or E3 rendered the system more like the native enzyme complex, compared with the use of a free lipoyl domain, yet of a size still amenable to investigation by NMR spectroscopy. Recognition of the tethered lipoyl domain by E1 was found to be ensured by intensive interaction with the lipoyl-lysine-containing beta-turn and with residues in the protruding loop close to the beta-turn. The size and sequence of this loop varies significantly between species and dictates the lipoylated lipoyl domain as the true substrate for E1. In contrast, with E3 the main interaction sites on the tethered lipoyl domain were revealed as residues Asp41 and Ala43, which form a conserved sequence motif, DKA, around the lipoyl-lysine residue. No domain specificity is observed at this step and substrate channelling in the complex thus rests on the recognition of the lipoyl domain by the first enzyme, E1. The cofactor, thiamine diphosphate, and substrate, pyruvate, had distinct but contrasting effects on the E1/di-domain interaction, whereas NAD(+) and NADH had negligible effect on the E3/di-domain interaction. Tethering the lipoyl domain did not significantly change the nature of its interaction with E1 compared with a free lipoyl domain, indicative of the conformational freedom allowed by the linker in the movement of the lipoyl domain between active sites.  相似文献   

11.
Efficient catalysis in the second step of the pyruvate dehydrogenase (E1) component reaction requires a lipoyl group to be attached to a lipoyl domain that displays appropriately positioned specificity residues. As substrates, the human dihydrolipoyl acetyltransferase provides an N-terminal (L1) and an inner (L2) lipoyl domain. We evaluated the specificity requirements for the E1 reaction with 27 mutant L2 (including four substitutions for the lipoylated lysine, Lys(173)), with three analogs substituted for the lipoyl group on Lys(173), and with selected L1 mutants. Besides Lys(173) mutants, only E170Q mutation prevented lipoylation. Based on analysis of the structural stability of mutants by differential scanning calorimetry, alanine substitutions of residues with aromatic side chains in terminal regions outside the folded portion of the L2 domain significantly decreased the stability of mutant L2, suggesting specific interactions of these terminal regions with the folded domain. E1 reaction rates were markedly reduced by the following substitutions in the L2 domain (equivalent site-L1): L140A, S141A (S14A-L1), T143A, E162A, D172N, and E179A (E52A-L1). These mutants gave diverse changes in kinetic parameters. These residues are spread over >24 A on one side of the L2 structure, supporting extensive contact between E1 and L2 domain. Alignment of over 40 lipoyl domain sequences supports Ser(141), Thr(143), and Glu(179) serving as specificity residues for use by E1 from eukaryotic sources. Extensive interactions of the lipoyl-lysine prosthetic group within the active site are supported by the limited inhibition of E1 acetylation of native L2 by L2 domains altered either by mutation of Lys(173) or enzymatic addition of lipoate analogs to Lys(173). Thus, efficient use by mammalian E1 of cognate lipoyl domains derives from unique surface residues with critical interactions contributed by the universal lipoyl-lysine prosthetic group, key specificity residues, and some conserved residues, particularly Asp(172) adjacent to Lys(173).  相似文献   

12.
Least squares alignment of the E. coli pyruvate dehydrogenase multienzyme complex E1 subunit and yeast transketolase crystal structures indicates a general structural similarity between the two enzymes and provides a plausible location for a short-loop region in the E1 structure that was unobserved due to disorder. The residue H407, located in this region, is shown to be able to penetrate the active site. Suggested by this comparison, the H407A E1 variant was created, and H407 was shown to participate in the reductive acetylation of both an independently expressed lipoyl domain and the intact 1-lipoyl E2 subunit. While the H407A substitution only modestly affected the reaction through pyruvate decarboxylation (ca. 14% activity compared to parental E1), the overall complex has a much impaired activity, at most 0.15% compared to parental E1. Isothermal titration calorimetry measurements show that the binding of the lipoyl domain to the H407A E1 variant is much weaker than that to parental E1. At the same time, mass spectrometric measurements clearly demonstrate much impaired reductive acetylation of the independently expressed lipoyl domain and of the intact 1-lipoyl E2 by the H407A variant compared to the parental E1. A proposal is presented to explain the remarkable conservation of the three-dimensional structure at the active centers of the E. coli E1 subunit and transketolase on the basis of the parallels in the ligation-type reactions carried out and the need to protonate a very weak acid, a dithiolane sulfur atom in the former, and a carbonyl oxygen atom in the latter.  相似文献   

13.
In the pyruvate dehydrogenase complex (PDHC) of Zymomonas mobilis the beta subunit of the pyruvate dehydrogenase (E1p) as well as the acetyltransferase (E2p) contain an N-terminal lipoyl domain. Both lipoyl domains were acetylated in vitro using 2-14C-pyruvate as a substrate, demonstrating that both lipoyl domains can accept acetyl groups from the E1 component. As previously shown the structural genes (pdhA alpha beta, pdhB, lpd) encoding the pyruvate dehydrogenase complex of Z. mobilis are located in two distinct gene clusters, pdhA alpha beta and pdhB-orf2-lpd (U. Neveling et al. (1998) J. Bacteriol. 180, 1540-1548). Analysis of pdh gene expression using lacZ fusions revealed that the DNA fragments upstream of pdhA alpha, pdhB and lpd each have promoter activities. These pdh promoter activities were 7-30-fold higher in Z. mobilis than in Escherichia coli.  相似文献   

14.
Bao H  Kasten SA  Yan X  Hiromasa Y  Roche TE 《Biochemistry》2004,43(42):13442-13451
Pyruvate dehydrogenase kinase 2 (PDK2) activity is stimulated by NADH and NADH plus acetyl-CoA via the reduction and reductive acetylation of the lipoyl groups of the dihydrolipoyl acetyltransferase (E2) component. Elevated K(+) and Cl(-) were needed for significant stimulation. Stimulation substantially increased both k(cat) and the K(m) for ATP; the fractional stimulation increased with the level of ATP. With an E2 structure lacking the pyruvate dehydrogenase (E1) binding domain, stimulation of PDK2 was retained, the K(m) for E1 decreased, and the equilibrium dissociation constant for ATP increased but remained much lower than the K(m) for ATP. Stimulation of PDK2 activity greatly reduced the fraction of bound ADP. These results fit an ordered reaction mechanism with ATP binding before E1 and stimulation increasing the rate of dissociation of ADP. Conversion of all of the lipoyl groups in the E2 60mer to the oxidized form (E2(ox)) greatly reduced k(cat) and the K(m) of PDK2 for ATP. Retention over an extended period of time of a low portion of reduced lipoyl groups maintains E2 in a state that supported much higher PDK2 activity than short-term (5 min) reduction of a large portion of lipoyl groups of E2(ox), but reduction of E2(ox) produced a larger fold stimulation. Reduction and to a greater extent reductive acetylation increased PDK2 binding to E2; conversion to E2(ox) did not significantly hinder binding. We suggest that passing even limited reducing equivalents among lipoyl groups maintains E2 lipoyl domains in a conformation that aids kinase function.  相似文献   

15.
Limited proteolysis with trypsin has been used to study the domain structure of the dihydrolipoyltransacetylase (E2) component of the pyruvate dehydrogenase complex of Azotobacter vinelandii. Two stable end products were obtained and identified as the N-terminal lipoyl domain and the C-terminal catalytic domain. By performing proteolysis of E2, which was covalently attached via its lipoyl groups to an activated thiol-Sepharose matrix, a separation was obtained between the catalytic domain and the covalently attached lipoyl domain. The latter was removed from the column after reduction of the S-S bond and purified by ultrafiltration. The lipoyl domain is monomeric with a mass of 32.6 kDa. It is an elongated structure with f/fo = 1.62. Circulair dichroic studies indicates little secondary structure. The catalytic domain is polymeric with S20.w = 17 S and mass = 530 kDa. It is a compact structure with f/fo = 1.24 and shows 40% of the secondary structure of E2. The cubic structure of the native E2 is retained by this fragment as observed by electron microscopy. Ultracentrifugation in 6 M guanidine hydrochloride in the presence of 2 mM dithiothreitol yields a mass of 15.8 kDa. An N-terminal sequence of 36 amino acids is homologous with residues 370-406 of Escherichia coli E2. The catalytic domain possesses the catalytic site, but in contrast to the E. coli subunit binding domain the pyruvate dehydrogenase (E1) and lipoamide dehydrogenase (E3) binding sites are lost during proteolysis. From comparison with the E. coli E2 sequence a model is presented in which the several functions, such as lipoyl domain, the E3 binding site, the catalytic site, the E2/E2 interaction sites, and the E1 binding site, are indicated.  相似文献   

16.
The lipoyl domain of the dihydrolipoyl succinyltransferase (E2o) component of the 2OGDH (2-oxoglutarate dehydrogenase) multienzyme complex houses the lipoic acid cofactor through covalent attachment to a specific lysine side chain residing at the tip of a beta-turn. Residues within the lipoyl-lysine beta-turn and a nearby prominent loop have been implicated as determinants of lipoyl domain structure and function. Protein engineering of the Escherichia coli E2o lipoyl domain (E2olip) revealed that removal of residues from the loop caused a major structural change in the protein, which rendered the domain incapable of reductive succinylation by 2-oxoglutarate decarboxylase (E1o) and reduced the lipoylation efficiency. Insertion of a new loop corresponding to that of the E. coli pyruvate dehydrogenase lipoyl domain (E2plip) restored lipoylation efficiency and the capacity to undergo reductive succinylation returned, albeit at a lower rate. Exchange of the E2olip loop sequence significantly improved the ability of the domain to be reductively acetylated by pyruvate decarboxylase (E1p), retaining approx. 10-fold more acetyl groups after 25 min than wild-type E2olip. Exchange of the beta-turn residue on the N-terminal side of the E2o lipoyl-lysine DK(A)/(V) motif to the equivalent residue in E2plip (T42G), both singly and in conjunction with the loop exchange, reduced the ability of the domain to be reductively succinylated, but led to an increased capacity to be reductively acetylated by the non-cognate E1p. The T42G mutation also slightly enhanced the lipoylation rate of the domain. The surface loop is important to the structural integrity of the protein and together with Thr42 plays an important role in specifying the interaction of the lipoyl domain with its partner E1o in the E. coli 2OGDH complex.  相似文献   

17.
In vitro deletion and site-directed mutagenesis of the aceF gene of Escherichia coli was used to generate dihydrolipoamide acetyltransferase (E2p) polypeptide chains containing various permutations and combinations of functional and non-functional lipoyl domains. A lipoyl domain was rendered non-functional by converting the lipoylatable lysine residue to glutamine. Two- and three-lipoyl domain E2p chains, with lipoyl-lysine (Lys244) substituted by glutamine in the innermost lipoyl domains (designated +/- and +/+/-, respectively), and similar chains with lipoyl-lysine (Lys143) substituted by glutamine in the outer lipoyl domains (designated -/+ and -/-/+), were constructed. In all instances, pyruvate dehydrogenase complexes were assembled in vivo around E2p cores composed of the modified peptide chains. All the complexes were essentially fully active in catalysis, although the complex containing the -/-/+ version of the E2p polypeptide chain showed a 50% reduction in specific catalytic activity. Similarly, active-site coupling in the complexes containing the +/-, +/+/- and -/+ constructions of the E2p chains was not significantly different from that achieved by the wild-type complex. However, active-site coupling in the complex containing the -/-/+ version of the E2p chain was slightly impaired, consistent with the reduced overall complex activity. These results indicate that during oxidative decarboxylation there is no mandatory order of reductive acetylation of repeated lipoyl domains within E2p polypeptide chains, and strongly suggest that the three tandemly repeated lipoyl domains in the wild-type E2p chain function independently in the pyruvate dehydrogenase complex.  相似文献   

18.
Jones DD  Stott KM  Howard MJ  Perham RN 《Biochemistry》2000,39(29):8448-8459
The three lipoyl (E2plip) domains of the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase (PDH) complex of Escherichia coli house the lipoyl-lysine side chain essential for active-site coupling and substrate channelling within the complex. The structure of the unlipoylated form of the innermost domain (E2plip(apo)) was determined by multidimensional NMR spectroscopy and found to resemble closely that of a nonfunctional hybrid domain determined previously [Green et al. (1995) J. Mol. Biol. 248, 328-343]. The domain comprises two four-stranded beta-sheets, with the target lysine residue residing at the tip of a type-I beta-turn in one of the sheets; the N- and C-termini lie close together at the opposite end of the molecule in the other beta-sheet. Measurement of (15)N NMR relaxation parameters and backbone hydrogen/deuterium (H/D) exchange rates reveals that the residues in and surrounding the lipoyl-lysine beta-turn in the E2plip(apo) form of the domain become less flexible after lipoylation of the lysine residue. This implies that the lipoyl-lysine side chain may not sample the full range of conformational space once thought. Moreover, reductive acetylation of the lipoylated domain (E2plip(holo) --> E2plip(redac)) was accompanied by large changes in chemical shift between the two forms, and multiple resonances were observed for several residues. This implies a change in conformation and the existence of multiple conformations of the domain on reductive acetylation, which may be important in stabilizing this catalytic intermediate.  相似文献   

19.
J E Lawson  R H Behal  L J Reed 《Biochemistry》1991,30(11):2834-2839
Disruption of the PDX1 gene encoding the protein X component of the mitochondrial pyruvate dehydrogenase (PDH) complex in Saccharomyces cerevisiae did not affect viability of the cells. However, extracts of mitochondria from the mutant, in contrast to extracts of wild-type mitochondria, did not catalyze a CoA- and NAD(+)-linked oxidation of pyruvate. The PDH complex isolated from the mutant cells contained pyruvate dehydrogenase (E1 alpha + E1 beta) and dihydrolipoamide acetyltransferase (E2) but lacked protein X and dihydrolipoamide dehydrogenase (E3). Mutant cells transformed with the gene for protein X on a unit-copy plasmid produced a PDH complex that contained protein X and E3, as well as E1 alpha, E1 beta, and E2, and exhibited overall activity similar to that of the wild-type PDH complex. These observations indicate that protein X is not involved in assembly of the E2 core nor is it an integral part of the E2 core. Rather, protein X apparently plays a structural role in the PDH complex; i.e., it binds and positions E3 to the E2 core, and this specific binding is essential for a functional PDH complex. Additional evidence for this conclusion was obtained with deletion mutations. Deletion of most of the lipoyl domain (residues 6-80) of protein X had little effect on the overall activity of the PDH complex. This observation indicates that the lipoyl domain, and its covalently bound lipoyl moiety, is not essential for protein X function. However, deletion of the putative subunit binding domain (residues approximately 144-180) of protein X resulted in loss of high-affinity binding of E3 and concomitant loss of overall activity of the PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The lipoate acetyltransferase (E2, Mr 70,000) and protein X (Mr 51,000) subunits of the bovine pyruvate dehydrogenase multienzyme complex (PDC) core assembly are antigenically distinct polypeptides. However comparison of the N-terminal amino acid sequence of the E2 and X polypeptides reveals significant homology between the two components. Selective tryptic release of the 14C-labelled acetylated lipoyl domains of E2 and protein X from native PDC generates stable, radiolabelled 34 and 15 kDa fragments, respectively. Thus, in contrast to E2 which contains two tandemly-arranged lipoyl domains, protein X appears to contain only a single lipoyl domain located at its N-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号