首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is posing a major challenge to coffee production worldwide leading to a need for the development of coffee cultivars with increased drought tolerance. In several plant species, the use of DREB genes in crop improvement has achieved promising results to desiccation tolerance engineering. Recent studies reported CcDREB1D specific patterns of expression in Coffea canephora and functional evidence of this gene involvement in drought stress responses. However, knowledge on natural diversity of this gene is largely unknown. In this context, this study aimed at evaluating the sequence variability of the DREB1D gene in several Coffea genotypes. Nucleotide variation in promoters and coding regions of this gene were evaluated in a population consisting of 38 genotypes of C. canephora, C. arabica and C. eugenioides, most of them characterized by different phenotypes (tolerance vs. susceptibility) in relation to drought. The genetic diversity of the loci revealed different haplotypes for the promoter and coding regions. In particular, our findings suggest association between drought tolerance and the genetic variations on DREB1D promoter regions, but not with those from its corresponding coding regions. Gene expression studies revealed up-regulated expression of DREB1D gene upon drought mainly in leaves of drought-tolerant clones of C. canephora, and in response to drought, high, and low temperatures in leaves of C. arabica, suggesting a key role of this gene in coffee responses to abiotic stress.  相似文献   

2.
Genetic diversity of 70 Mediterranean lentil (Lens culinaris ssp. culinaris Medicus) landraces was assessed using simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). These landraces were also assessed for variation in root and shoot traits and drought tolerance as estimated by relative water content (RWC), water losing rate (WLR) and wilting score (WS). Genetic diversity and clear differentiation of Moroccan landraces from those from northern Mediterranean regions (Italy, Turkey and Greece) were found. High genetic variation in root and shoot traits and traits related to drought tolerance was also observed. No relationship was found between drought tolerance of landraces and their geographic origin. Landraces with higher dry root biomass, chlorophyll content and root–shoot ratio were drought tolerant as evidenced by higher RWC and lower WLR and wilting severity. Kruskal–Wallis non-parametric test (K-W) was used to find SSRs and AFLPs associated with RWC, WLR and WS. Regression analysis showed six SSR and AFLP alleles explaining the highest phenotypic variation of RWC, WLR and WS (ranging from 21 to 50 % for SSRs and from 14 to 33 % for AFLPs). Functional genetic diversity analysis showed relationships between drought response of landraces and linked SSR and AFLP alleles to RWC, WLR and WS according to K-W test using canonical discriminant analysis. Our results confirm the feasibility of using association mapping to find DNA markers associated with drought tolerance in larger numbers of lentil landraces.  相似文献   

3.
The widespread Mediterranean Pinus pinea showed exceptionally low genetic diversity and low differentiation between traits in the adult phase. We explored the adaptation potential of seedlings from four main Iberian provenances during their regeneration phase. We assessed the variability of shoot growth, allometry, physiological traits, and phenotypic plasticity to the interactive effect of light and water environments during 8-month moderate water-stress cycle and after one-week heat wave. The effect of shade and drought was mainly orthogonal whatever the provenance. The inland La Mancha provenance showed higher shoot growth and biomass compared to the southern coastal Depresión-del-Guadalquivir provenance. Following the heat wave, La Mancha presented higher net photosynthetic rates, a lower decrease in maximal quantum efficiency of PSII, and a higher accumulated relative height growth, thus, showing an adaptive advantage. The observed differences corroborated the ecological grouping of the provenances along latitudinal and inland–coastal gradients. We confirmed the high adaptive plasticity of Pinus pinea to the unpredictable Mediterranean environment.  相似文献   

4.
Demographic and environmental forces shape geographical patterns of genetic diversity. Knowledge thereof is not only important for evolutionary ecologists but, in light of future climate change, will be of interest to conservation biologists as well. Sugar pine (Pinus lambertiana Dougl.) is an ecologically important species found in mixed conifer forests across western North America. We applied a candidate-gene-based environmental study to infer spatial patterns in neutral genetic variation and to identify genetic variants associated with local adaptation to drought. Using a panel of 186 candidate gene single nucleotide polymorphisms (SNP), we genotyped 313 individual trees sampled across the entire state of California, USA. We found evidence for a large-scale subdivision into two genetic clusters along the latitudinal axis and increased genetic similarity among sugar pines within a 200–300-km boundary. Associating allelic to environmental variation indicated nine putative SNPs related to local adaptation to drought. These results provide insights into neutral population structure across the natural range of sugar pine and further substantiated a key role of the mitochondrial import inner membrane machinery in enhanced tolerance to drought and constitute important steps into unravelling the eco-evolutionary dynamics in sugar pine.  相似文献   

5.
Cycas debaoensis is a critically endangered cycad species endemic to China. This species is found on two kinds of habitats according to the edaphic differences, sand and karst. A previous chloroplast DNA (cpDNA) study indicated that C. debaoensis had low genetic variation within populations and high genetic differentiation among populations. Because maternally inherited cpDNA does not fully characterize genetic structure of the species, we screened seven low-copy nuclear genes and 17 nuclear microsatellite loci to detect the nuclear genetic diversity, differentiation, and the population structure of C. debaoensis. The nuclear genes revealed higher level of genetic diversity. There were both the same and region-specific haplotypes or alleles between the karst and sand regions. Nuclear gene flow among all the populations was much greater than that of cpDNA, which indicated that pollen-mediated gene flow was much greater than seed-mediated gene flow. This promoted low nuclear genetic differentiation among populations of C. debaoensis. The study suggests that both genetic and anthropogenic disturbances have resulted in the critically endangered status of C. debaoensis.  相似文献   

6.
7.
Water-deficit stress tolerance in rice is important for maintaining stable yield, especially under rain-fed ecosystem. After a thorough drought-tolerance screening of more than 130 rice genotypes from various regions of Koraput in our previous study, six rice landraces were selected for drought tolerance capacity. These six rice landraces were further used for detailed physiological and molecular assessment under control and simulated drought stress conditions. After imposing various levels of drought stress, leaf photosynthetic rate (PN), photochemical efficiency of photosystem II (Fv/Fm), SPAD chlorophyll index, membrane stability index and relative water content were found comparable with the drought-tolerant check variety (N22). Compared to the drought-susceptible variety IR64, significant positive attributes and varietal differences were observed for all the above physiological parameters in drought-tolerant landraces. Genetic diversity among the studied rice landraces was assessed using 19 previously reported drought tolerance trait linked SSR markers. A total of 50 alleles with an average of 2.6 per locus were detected at the loci of the 19 markers across studied rice genotypes. The Nei’s genetic diversity (He) and the polymorphism information content (PIC) ranged from 0.0 to 0.767 and 0.0 to 0.718, respectively. Seven SSR loci, such as RM324, RM19367, RM72, RM246, RM3549, RM566 and RM515, showed the highest PIC values and are thus, useful in assessing the genetic diversity of studied rice lines for drought tolerance. Based on the result, two rice landraces (Pandkagura and Mugudi) showed the highest similarity index with tolerant check variety. However, three rice landraces (Kalajeera, Machhakanta and Haldichudi) are more diverse and showed highest genetic distance with N22. These landraces can be considered as the potential genetic resources for drought breeding program.  相似文献   

8.
To gain knowledge on the molecular basis of diversity of several clans of Saudi camel (Camelus dromedarius) characterization of these animals was conducted at both genetic and protein levels. To this end, blood and milk samples were collected from several camel breeds at different Saudi Arabia locations (northern Jeddah, Riyadh, and Alwagh governorates). Genomic DNA was extracted from blood of four Saudi camel breeds (Majahem, Safra, Wadha, and Hamara), and DNA fragments of the casein and α-lactalbumin genes were amplified. The retrieved DNA sequences were analyzed for genetic variability. The inter-simple sequence repeat technique was used for confirming the relationships among the analyzed camel breeds, and the PCR–RFLP with two restriction enzymes was utilized for exploring their molecular variations. The number of haplotypes, gene diversity, nucleotide diversity, average number of nucleotide differences, and sequence conservation were calculated for all the analyzed DNA sequences. These analyses revealed the presence of several single nucleotide polymorphisms in the analyzed DNA sequences. A group of neighbor joining trees was built for inferring the evolutionary variations among the studied animals. Protein profiling of milk from different camel clans was also conducted, and differences between and within the Saudi camel clans were easily found based on the isoelectric focusing (IEF) profiles using ampholytes with different IEF range. This study revealed that analyzed camel breeds show low levels of genetic differences. This may be a reflection of the evolutionary history of C. dromedarius that was domesticated based on a highly homogeneous ancestor ecotype.  相似文献   

9.
Dissociation (Ds) insertional mutagenesis has been regarded as an efficient tool to generate insertion mutants for functional genomics and molecular breeding. However, little is known about the application of the tool on exploring biological functions of abiotic stress-related genes and their molecular breeding experience. In this study, a total of 833 Ds insertion lines have been obtained, which showed significantly higher tolerance or sensitivity to high salinity, drought or cold stress, by screening around 20,000 Ds lines. Analysis of Ds flanking sequence tags revealed that 165 rice genes were tagged by Ds insertion. Gene Ontology (GO) and gene set enrichment analysis showed that over-represented Ds-tagged genes might function in the response to exogenous stimuli. These Ds-tagged genes showed expression divergence among five high salinity and five drought tolerant rice lines under either high salinity or drought stress. Higher percentages of Ds-tagged genes were down- or up-regulated by these abiotic stresses. These Ds-tagged genes were also frequently reduced or suppressed by various phytohormones including abscisic acid and jasmonate. On the other hand, we have also detected single nucleotide polymorphisms (SNPs) and 1–10 base pairs of insertion and deletions (indels) of these Ds-tagged genes among ten high salinity/drought tolerant rice lines by comparing with the reference genome Nipponbare. Our data showed that SNPs were detected among 102 out of 165 genes and indels were identified in 39 out of 165 genes. All the data provided additional information to further explore the biological functions of these genes or to carry out molecular breeding.  相似文献   

10.
11.
Crassostrea gigas is a model mollusk, but its genetic features have not been studied comprehensively. In this study, we used whole-genome resequencing data to identify and characterize nucleotide diversity and population recombination rate in a diverse collection of 21 C. gigas samples. Our analyses revealed that C. gigas harbors both extremely high genetic diversity and recombination rates across the whole genome as compared with those of the other taxa. The noncoding regions, introns, intergenic spacers, and untranslated regions (UTRs) showed a lower level diversity than the synonymous sites. The larger introns tended to have lower diversity. Moreover, we found a negative association of the non-synonymous diversity with gene expression, which suggested that purifying selection played an important role in shaping genetic diversity. The nucleotide diversity at the 100- and 50-kb levels was positively correlated with population recombination rates, which was expected if the diversity was shaped by purifying selection or hitchhiking of advantageous mutants. Our work gives a general picture of the oyster’s polymorphism pattern and its association with recombination rates.  相似文献   

12.
The genetic relationships of mantis shrimp Oratosquilla oratoria between the coastal waters of China and Japan were not well studied. To reveal the genetic differentiation and genetic structure among populations, we collected populations of mantis shrimp O. oratoria from the coastal waters of China and Japan to analyze the mtDNA control region variation. A total of 309 individuals of O. oratoria were collected from 13 localities (11 from China and 2 from Japan) and a segment of mitochondrial DNA control region was sequenced. Three hundred nine haplotypes were defined, yielding a very high haplotype diversity and nucleotide diversity. Two lineages of O. oratoria were revealed and displayed strong differences in the geographical distribution. In the coastal waters of China, the geographic distribution of the two lineages was completely separated by the Yangtze River estuary; however, the lineages showed geographic sympatry in two populations from Japan. Based on the lineage distribution, three groups were defined. There was no significant genetic differentiation among the populations within the three groups, indicating high gene flow within each group. Significant and negative values for Tajima D and Fu’s Fs tests, and mismatch distributions for two lineages indicated population expansion. The present result confirmed that the freshwater outflow from the Yangtze River formed a physical barrier and affected gene exchange. The different distribution patterns of the two lineages in coastal waters of China and Japan indicated that the larvae of O. oratoria were transferred from China to the coastal waters of Japan with a one-way gene flow.  相似文献   

13.
Due to its beneficial effects on river ecosystems, black alder (Alnus glutinosa) is one of the tree species selected for planting on riverbanks in the cross-border area encompassing Wallonia in Belgium, Lorraine in France, and Luxembourg. The preservation of this species, however, is threatened by an invasive pathogen that particularly targets and kills young alder individuals. The objectives of this study were to characterize the genetic diversity and the genetic structure of A. glutinosa at this local level with the aim of assisting the conservation and replanting strategies and to determine if a germplasm collection comprising individuals from the same cross-border area captures the diversity present in the region. Nuclear simple sequence repeat (SSR) and chloroplastic DNA (cpDNA) markers were used to analyze four local wild populations and the germplasm collection which is representative of two river catchments and six legal provenance regions. Three populations distant from the studied area were also included. A panel of 14 nuclear SSR loci revealed high allelic diversity and very low differentiation among wild populations (mean F ST?=?0.014). The germplasm collection displayed a range of alleles that were representative of the different populations, and no significant differentiation between the germplasm collection and the local wild populations was observed, making this collection, as far as allelic diversity is concerned, suitable for providing trees for riverbank replanting programs. Using SSR markers, various statistical approaches consistently indicated the lack of a significant geographical structure at the level of the river catchments or provenance regions. In contrast, two cpDNA haplotypes were detected and displayed a cross-border geographically structured distribution that could be taken into account in defining new cross-border provenance regions.  相似文献   

14.
15.
16.
Bottle gourd (Lagenaria siceraria), a multipurpose crop, is among the first domesticates of humans. This study analyses nuclear ribosomal DNA (nrDNA) of the two cultivated subspecies to improve our understanding on the African origin and the dispersal to Asia. A total of 146 nrDNA sequences representing 79 individuals from African cultivars and 67 individuals from Asian cultivars were compared; the resulting nrDNA sequences were composed of 35 and 16 haplotypes specific to Africa and Asia, respectively, and two additional haplotypes shared by both continents. When all the rDNA haplotypes were bulked, the genetic differentiation (F ST ) was significant between the subspecies (P?<?0.001), within Africa (P?<?0.001) and within Asia (P?<?0.05), and the nucleotide diversity was 2.5-fold higher in Africa. Sorting the haplotypes by classes of paralogs revealed more classes in Africa, and in classes where African and Asian cultivars were represented, the diversity was higher in Africa, in general. The 5.8S-coding regions showed two to four amino acid differences resulting to nine protein sequence variants, one of which encompassed all the Asian cultivars. The nucleotide diversity at that shared variant was 1.43-fold higher in Africa than in Asia. Analyses of phylogenetic networks revealed major shared haplotypes containing 23.91 % of the cultivars and having founder locations. We suggest that African cultivars reached Asia. The study tags for the first time nrDNA haplotypes capable of discriminating between and within the subspecies. Thirty single nucleotide polymorphisms (SNPs) and five insertion-deletions (Indels) derived from the haplotypes and registered in GenBank are provided.  相似文献   

17.
Translocation of trees has been used as a common method to mediate genetic conservation and restoration of forests. However, very few programs include strategies developed to recover or maintain the genetic diversity of the translocated species. Anacardium excelsum is a tree native to the tropics of America that is extensively used in forestry. In Colombia, restoration of forests through the translocation of native species has regained importance, and A. excelsum has been recently included in the National Strategy for Plant Conservation. Thus, in order to define the level of genetic structure and the level of genetic diversity within certain regions where remnants of the seasonally dry tropical forests (SDTF) of Colombia have been retained, we genotyped 106 trees using nuclear inter-simple sequence repeats (ISSR) and sequenced two non-coding chloroplast loci for these specimens. Our ISSR dataset revealed the existence of a gradient in genetic diversity within A. excelsum with the most diverse remnants encountered in the south of the country, while the localities sampled in the Caribbean coast and in the Chicamocha canyon were less diverse. Chloroplast loci also pointed out the very low genetic diversity of A. excelsum from the Chicamocha canyon and we propose to prioritize this area within future conservation programs. Both chloroplast and nuclear markers supported the existence of genetic divergence between distinct regions of Colombia, uncovering genetic differences between inter-Andean, Caribbean, and Chicamocha canyon A. excelsum remnants. Hence, we advise to choose the provenance of seeds or plants carefully before translocation and to consider minimal mixing of material from different regions when initializing restoration programs for A. excelsum, in Colombia.  相似文献   

18.
Zanthoxylum is an economically and ecologically important genus of the Rutaceae family, of which Z. bungeanum and Z. armatum have a long history of cultivation in China. However, how the natural processes such as selection and drift and agriculture practices have influenced the genetic variation of cultivated Zanthoxylum species during long-term domestication remains elusive. Herein, we determined the population genetic structure of current widely cultivated Zanthoxylum species, Z. bungeanum and Z. armatum. Microsatellite markers revealed a high level of genetic variation and significant genetic differentiation for both species despite Z. bungeanum showed higher genetic diversity than Z. armatum. AMOVA indicated that most of the genetic variation exists within individuals rather than among provenances for both species. Population structure analyses generated three distinct groups within the entire accessions. All Z. bungeanum accessions were distinguished into two major geographic groups, north and south groups, with Qinling Mountains as the main geographic barrier to gene flow while a significant genetic differentiation was observed between cultivated and wild Z. armatum accessions. Mantel test of Z. bungeanum displayed a significant correlation between genetic and geographic distances within each inferred group but no correlation between genetic and geographic distance was observed when comparing genetic and geographic distances focusing only on pairwise of north vs. south provenances, ruling out the hypothesis that gene flow between north and south provenances followed an isolation-by-distance model. Our research provided a fundamental genetic profile that will improve the conservation and responsible exploitation of the extant germplasm of Zanthoxylum.  相似文献   

19.
Cassava (Manihot esculenta) is an important tropical crop with extraordinary tolerance to drought stress but few reports on it. In this study, MeDREB1D was significantly and positively induced by drought stress. Two allelic variants of the gene named MeDREB1D(R-2) and MeDREB1D(Y-3) were identified. Overexpressing MeDREB1D(R-2) and MeDREB1D(Y-3) in Arabidopsis resulted in stronger tolerance to drought and cold stresses. Under drought stress, transgenic plants had more biomass, higher survival rates and less MDA content than wild-type plants. Under cold stress, transgenic plants also had higher survival rates than wild-type plants. To further characterize the molecular function of MeDREB1D, we conducted an RNA-Seq analysis of transgenic and wild-type Arabidopsis plants. The results showed that the Arabidopsis plants overexpressing MeDREB1D led to changes in downstream genes. Several POD genes, which may play a vital role in drought and cold tolerance, were up-regulated in transgenic plants. In brief, these results suggest that MeDREB1D can simultaneously improve plant tolerance to drought and cold stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号