首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.  相似文献   

2.
Strain 16F1ET was isolated from a 3-kGy-irradiated sediment sample collected at Han River in Seoul, Republic of Korea. Cells of this strain were observed to be Gram-positive, pililike structure, and short rod shape, and colonies were red in color. The strain showed the highest degree of 16S rRNA gene sequence similarity to Deinococcus aquaticus PB314T (98.8%), Deinococcus depolymerans TDMA-24T (98.1%), Deinococcus caeni Ho-08T (98.0%), and Deinococcus grandis DSM 3963T (97.0%). 16S rRNA gene sequence analysis identified this strain as a member of the genus Deinococcus (Family: Deinococcaceae). The genomic DNA G+C content of strain 16F1ET was 66.9 mol%. The low levels of DNA-DNA hybridization (< 56.2%) with the species mentioned above identified strain 16F1ET as a novel Deinococcus species. Its oxidase and catalase activities as well as the production of acid from glucose were positive. Growth of the strain was observed at 10–37°C (optimum: 20–30°C) and pH 4–10 (optimum: pH 7–8). The cells tolerated less than 5% NaCl and had low resistance to gamma radiation (D10 < 4 kGy). Strain 16F1ET possessed the following chemotaxonomic characteristics: C16:0, C15:1ω6c, and C16:1ω7c as the major fatty acids; phosphoglycolipid as the predominant polar lipid; and menaquinone-8 as the predominant respiratory isoprenoid quinone. Based on the polyphasic evidence, as well as the phylogenetic, genotypic, phenotypic, and chemotaxonomic characterization results, strain 16F1ET (=KCTC 33793T =JCM 31404T) is proposed to represent the type strain of a novel species, Deinococcus seoulensis sp. nov.  相似文献   

3.
Strain 63MJ-2T was isolated from the feces of broad-winged katydid (Pseudorhynchus japonicus) collected in Korea. The 16S rRNA gene sequence of this strain showed the highest sequence similarity with that of Siphonobacter aquaeclarae P2T (96.1%) and had low similarities (below 86.3%) with those of other members of family ‘Flexibacteraceae’. The strain 63MJ-2T is a strictly aerobic, Gram-stain-negative, non-motile, rod-shaped bacterium. The strain grew at 4–35°C (optimum, 25–30°C), pH of 5.0–9.0 (optimum, 6.0–7.0), and 0–2.0% (optimum, 1.0–2.0) (w/v) NaCl. The DNA G+C content of strain 63MJ-2T was 43.5 mol%. The major fatty acids were C16:1ω5c (42.5%), iso-C17:0 3-OH (18.7%), and summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c, 18.0%). The major menaquinone was MK-7 and polar lipids were phosphatidylethanolamine, six unknown aminolipids, and five unknown lipids. Based on the evidence from our polyphasic taxonomic study, we conclude that strain 63MJ-2T should be classified as a novel species of the genus Siphonobacter, and propose the name Siphonobacter intestinalis sp. nov. The type strain is 63MJ-2T (=KACC 18663T =NBRC 111883T).  相似文献   

4.
5.
Strain 16F3HT, a Gram-negative, aerobic, non-motile, and oval-shaped bacterium, was isolated from river water collected from the Han River in South Korea. Growth of strain 16F3HT was observed at 10–42 °C (optimum at 25–30 °C), but no growth occurred at 4 °C. The strain is able to grow at pH 4–10 (optimum at pH 7–8) and tolerates up to 4% NaCl (w/v), with optimum growth at 0.5% NaCl. The isolate was found to be resistant to UV irradiation. Based on 16S rRNA gene sequence analysis, it is closely related to ‘Deinococcus seoulensis’ 16F1E (98.8%), Deinococcus aquaticus PB314T (98.1%) and Deinococcus caeni Ho-08T (98.0%). The level of DNA–DNA homology between the novel strain and the three related strains was 57.4, 41.2, and 35.8%, respectively. Chemotaxonomic data revealed that strain 16F3HT possesses MK-8 as the predominant respiratory quinone, an unidentified phosphoglycolipid as the major polar lipid, and C15:1 ω6c and C16:1 ω7c as the major fatty acids. The DNA G + C content was determined to be 65.7 mol%. Based on polyphasic evidence, strain 16F3HT (=KCTC 33794T = JCM 31406T) should be classified as the type strain of a novel Deinococcus species, for which the name Deinococcus knuensis sp. nov. is proposed.  相似文献   

6.
A Gram-stain-positive, halophilic, rod-shaped, non-motile, spore forming bacterium, strain NKC1-2T, was isolated from kimchi, a Korean fermented food. Comparative analysis based on 16S rRNA gene sequence demonstrated that the isolated strain was a species of the genus Virgibacillus. Strain NKC1-2T exhibited high level of 16S rRNA gene sequence similarity with the type strains of Virgibacillus xinjiangensis SL6-1T (96.9%), V. sediminis YIM kkny3T (96.8%), and V. salarius SA-Vb1T (96.7%). The isolate grew at pH 6.5–10.0 (optimum, pH 8.5–9.0), 0.0–25.0% (w/v) NaCl (optimum, 10–15% NaCl), and 15–50°C (optimum, 37°C). The major menaquinone in the strain was menaquinone-7, and the main peptidoglycan of the strain was meso-diaminopimelic acid. The predominant fatty acids of the strain were iso-C14:0, anteisio-C15:0, iso- C15:0, and iso-C16:0 (other components were < 10.0%). The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G + C content of NKC1-2T was 42.5 mol%. On the basis of these findings, strain NKC1-2T is proposed as a novel species in the genus Virgibacillus, for which the name Virgibacillus kimchii sp. nov. is proposed (=KACC 19404T =JCM 32284T). The type strain of Virgibacillus kimchii is NKC1-2T.  相似文献   

7.
A novel Gram-negative, motile, and ovoid-shaped strain, LHWP3T, which belonged to the family Planctomycetaceae in the phylum Planctomycetes, was isolated from a dead ark clam Scapharca broughtonii collected during a mass mortality event on the south coast of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the isolate was most closely related to the type strain of Rhodopirellula baltica, with a shared 16S rRNA gene sequence similarity of 94.8%. The isolate grew optimally at 30°C in 4–6% (w/v) NaCl, and at pH 7. The major isoprenoid quinone was menaquinone-6 (MK-6). The dominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, and unidentified polar lipids. The predominant cellular fatty acids were C16:0, C18:1 ω9c, and C18:0. The genomic DNA G+C content of strain LHWP3T was 53.0 mol%. Based on polyphasic taxonomic analyses, strain LHWP3T should be classified as a novel species in the genus Rhodopirellula in the family Planctomycetaceae, for which the name Rhodopirellula rosea sp. nov. is proposed. The type strain is LHWP3T (=KACC 15560T =JCM 17759T).  相似文献   

8.
A novel strain K-4-16T was isolated from forest soil of Namsan Mountain, Seoul, South Korea, and was taxonomically characterized by a polyphasic approach. Strain K-4-16T was observed to be a Gram-staining negative, grayish white-coloured, motile with peritrichous flagella, and rod shaped bacterium. It was able to grow at 15–45 °C, at pH 4.5–10.5, and at 0–4% (w/v) NaCl concentration. Based on the 16S rRNA gene sequence analysis, strain K-4-16T belongs to the genus Acidovorax and is closely related to Acidovorax anthurii CFBP 3232T (98.3% sequence identity), Acidovorax konjaci K2T (97.9% sequence identity), Acidovorax valerianellae CFBP 4730T (97.8% sequence identity), and Acidovorax caeni R-24608T (97.8% sequence identity). The only respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The predominant fatty acids of strain K-4-16T were summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genomic DNA G+C content of this novel strain was 64.7 mol%. The DNA–DNA relatedness between strain K-4-16T and its reference strains were below the threshold value of 70%. The morphological, physiological, chemotaxonomic, and phylogenetic analyses clearly distinguished this strain from its close phylogenetic neighbors. Thus, strain K-4-16T represents a novel species of the genus Acidovorax, for which the name Acidovorax monticola sp. nov. is proposed. The type strain is K-4-16T (=?KEMB 9005-570T?=?KACC 19171T?=?NBRC 113141T).  相似文献   

9.
Admittedly, the Lut Desert of Iran has been remained as an unexplored region from a microbiological standpoint. Domain Archaea contains extremophiles that can live in harsh habitats. Extremely halophilic archaea are exposed to different environmental stresses in the hypersaline environments such as high solar irradiance and periodic desiccation. Haloarchaeal diversity in Shoor River, a saline river in the Lut Desert (a salinity of 134.3 g L–1 of dissolved salts), was investigated by a culture-dependent method. A large number of extremely halophilic isolates were obtained and a subset of 59 isolates was considered distinct. Firstly, the isolates were screened for their resistance under desiccation stress in 35 days. Eleven of these strains remained viable during the period in a desiccator containing silica gel. Then, three of them were randomly selected and their resistance against desiccation and ionizing radiation were determined. The isolates MS2, MS17, and MS50 were still recovered after 8 weeks in a desiccator and were moderately resistant to gamma radiation with D10 value between 2 and 3 kGy. Strains MS2, MS17, and MS50 were affiliated with three species in the family Halobacteriaceae using 16S rRNA gene sequence analysis as well as morphological and biochemical characteristics—Haloterrigena jeotgali A29T (99.6% similarity), Natrialba aegyptia 40T (99.4% similarity) and Natrinema pallidum NCIMB 777T (99.3% similarity), respectively. Although resistance to desiccation did not follow the sigmoid survival curve pattern of Deinococcus radiodurans, apparently haloarchaea can show a more resistance to desiccation in more long-term periods of time. This is the first report on isolation of extremely halophilic archaea belonged to the family Halobacteriaceae and their radioresistance and desiccation tolerance properties isolated from the Shoor River.  相似文献   

10.
A novel, Gram-staining negative, yellow pigmented bacterial strain, designated 15J11-2T, was isolated from soil sample on Jeju Island, Republic of Korea. The strain was subjected to a taxonomic study using a polyphasic approach. The strain was able to grow at temperature range from 10°C to 30°C, pH 7–8, and in presence of 0–1% (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain 15J11-2T belongs to the genus Spirosoma and levels of 16S rRNA gene sequence similarity ranged from 91.5% to 89.8%. The genomic DNA G + C content of strain 15J11-2T was 46.0 mol%. The isolate contained phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, menaquinone MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1ω6c/C16:1ω7c; 39.4%), C16:1ω5c (27.1%), and C16:0 (13.0%) as the major fatty acids, which supported the affiliation of strain 15J11-2T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J11-2T from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, chemotaxonomic features, strain 15J11-2T represents a novel species of the genus Spirosoma, for which the name Spirosoma flavus sp. nov. is proposed. The type strain is 15J11-2T (= KCTC 52026T = JCM 31998T).  相似文献   

11.
A moderately halophilic bacterium, designated strain 9-2T, was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5–14 % (w/v) (optimum, 7–10 %, w/v), at temperatures of 10–45 °C (optimum 25–30 °C) and at pH 5.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2T is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502T (96.68 %), Halomonas campaniensis DSM 1293T (96.46 %), Halomonas ventosae DSM 15911T (96.27 %) and Halomonas kenyensis DSM 17331T (96.27 %). The DNA–DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2T and H. desiderata DSM 9502T. The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2T is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2T (=DSM 26881T = CGMCC 1.12467T).  相似文献   

12.
A novel halophilic bacterium, strain K7T, was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0–25.0% (w/v) NaCl (optimum 10–15% NaCl), pH 5.5–8.5 (optimum pH 7.0–7.5), and 15–42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7T and Gracilibacillus orientalis XH-63T (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7T is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7T (KACC 18669T; JCM 31344T).  相似文献   

13.
A new obligately methylotrophic bacterium, strain OVT, was isolated from roots of sedge (Carex sp.). The isolate was represented by aerobic gram-negative motile, non-spore-forming rods, which divided by binary fission. Optimal growth occurred at 22?29°C and pH 7.5?8.5 in the presence of 0.5?2% NaCl; growth was inhibited by 3.5% NaCl. Strain OVT utilized methanol as the only carbon and energy source. The organism used the KDPG variant of the ribulose monophosphate pathway (RuMP) of С1 metabolism. Ammonium was assimilated by reductive amination of α-ketoglutarate. The major cellular fatty acids were C16:0 (45.5%), C16:1ω7c (40.7%), and C17cyc (8.0%). The major ubiquinone was Q8. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G + C content of strain OVT was 51.4 mol % (Tm). While the 16S rRNA gene sequence of strain OVT exhibited high similarity to those of Methylobacillus species: M. gramineus LapT (99.6%) and M. glycogenes TK 0113T (98.7%), the DNA-DNA hybridization level between strain OVT and M. gramineus LapT was only 52%. Based on the data obtained, strain OVT was assigned to the new species Methylobacillus caricis sp. nov. (=VKM B-3158T = JCM 32031T).  相似文献   

14.
In this paper, a new bacterial strain designated as 16MFT21T is isolated from the muscle of a fish caught in the Antarctic Ocean. Strain 16MFT21T is a Gram-staining-positive, catalase-oxidase-positive, rod-shaped facultative-aerobic bacterium. The phylogenetic analysis that is based on the 16S-rRNA gene sequence of strain 16MFT21T revealed that it belongs to the genus Bacillus in the family Bacillaceae in the class Bacilli. The highest degrees of the sequence similarity of the strain 16MFT21T is with Bacillus licheniformis ATCC 14580T (96.6%) and Bacillus sonorensis NBRC 101234T (96.6%). The isolate formed a pale-yellow pigment, and it grew in the presence of 0% to 10% (w/v) NaCl (optimum at 2% NaCl), a pH of 6.0 to 10.0 (optimum pH from 7.0 to 8.0), and from 4°C to 30°C (optimum at 30°C). The major polar lipids consist of diphosphatidylglycerol (DPG) and phosphatidylglycerol (PG). The predominant fatty acids are iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The main respiratory quinone is menaquinone-7 (MK-7), and based on the use of the meso-diaminopimelic acid as the diagnostic diamino acid, the peptidoglycan cell-wall type is A1γ. Based on the phylogenetic, phenotypic, and chemotaxonomic data, strain 16MFT21T (=KCTC 18866T =JCM 31664T) for which the name Bacillus piscis sp. nov. is proposed should be classified as a new species.  相似文献   

15.
A Nocardia-like actinobacterial strain, designated YIM TG2190T, was isolated from rhizosphere soil of Psammosilene tunicoides collected from Gejiu, Yunnan province, China. The cells of strain YIM TG2190T were observed to be Gram-stain positive and non-motile. The strain forms extensively branched substrate mycelia that fragments into rod-shaped elements. The 16S rRNA gene sequence analysis showed that strain YIM TG2190T is closely related to Nocardia nova (97.5%), Nocardia jiangxiensis (97.1%) and Nocardia miyunensis (96.8%). Growth occurs at 4–30?°C (optimum 28?°C), pH 6.0–8.0 (optimum pH 7.0) and the strain can tolerate NaCl (w/v) up to 3% (optimum 0–1%). The cell walls were found to contain meso-diaminopimelic acid. The whole-cell sugars were identified as glucose, mannose, ribose, galactose, arabinose and fucose. The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides, phosphatidylglycerol and an unidentified phospholipid. The menaquinones detected were MK-9 (H2) and MK-8 (H4). The major fatty acids (>?5%) were found to be C16:0 (33.9%), summed feature 3 (21.7%), C18:0 10-methyl TBSA (13.7%) and C18:1ω9c (7.0%). The DNA G+C content was determined to be 61.1 mol%. DNA-DNA relatedness between the strain YIM TG2190T and N. nova CGMCC 4.1705T, N. jiangxiensis CGMCC 4.1905T and N. miyunensis CGMCC 4.1904T were 46.9?±?2.6, 36.8?±?1.3, and 35.7?±?2.6%, respectively, values which are less than the threshold value (70%) for the delineation of prokaryotic genomic species. The phenotypic, chemotaxonomic and phylogenetic data indicates that strain YIM TG2190T represents a novel species of the genus Nocardia, for which the name Nocardia zhihengii sp. nov. is proposed. The type strain is YIM TG2190T (=KCTC 39596T?=?DSM 100515T).  相似文献   

16.
A pale yellow bacterial strain, designated JJ-A5T, was isolated form an agricultural soil from Jeju Island in Republic of Korea. Cells of the strain were Gram-stain-negative, motile, flagellated and rod-shaped. The strain grew at 15–30°C, pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl. Growth occurred on R2A, but not on Luria-Bertani agar, nutrient agar, trypticase soy agar and MacConkey agar. The strain utilized alachlor as a sole carbon source for growth. The strain JJ-A5T showed 16S rRNA gene sequence similarities lower than 95.4% with members of the family Sphingomonadaceae. Phylogenetic analysis showed that the strain belongs to the family Sphingomonadaceae and strain JJ-A5T was distinctly separated from established genera of this family. The strain contained Q-10 as dominant ubiquinone and spermidine as major polyamine. The predominant cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), 11-methyl C18:1ω7c, C16:0 and C14:0 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, and phosphatidylcholine. The DNA G + C content of the strain was 62.7 mol%. On the basis of the phenotypic, genomic and chemotaxonomic characteristics, strain JJ-A5T is considered to represent a novel genus and species within the family Sphingomonadaceae, for which the name Tardibacter chloracetimidivorans gen. nov., sp. nov. is proposed. The type strain of Tardibacter chloracetimidivorans is JJ-A5T (= KACC 19450T = NBRC 113160T).  相似文献   

17.
18.
A Gram-stain-positive, polar flagella-containing, rod-shaped, obligate aerobic, endospore-forming bacterium, strain TK1655T, was isolated from the traditional Korean food gochujang. The 16S rRNA sequence of strain TK1655T was a member of the genus Oceanobacillus similar to that of the type strain of Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (97.2%), O. oncorhynchi subsp. oncorhynchi JCM 12661T (97.1%), O. locisalsi KCTC 13253T (97.0%), and O. sojae JCM 15792T (96.9%). Strain TK1655T was oxidase and catalase positive. Colonies were circular, smooth, low convex, cream in colour, and measured about 0.5–1.0 mm in diameter. The range for growth was 20–40°C (optimal, 30°C), pH 6.0–10.0 (optimal, 7.0), and 2–16% (w/v) NaCl (optimal, 2%). Additionally, the cells contained meso-DAP, and the predominant isoprenoid quinone was MK-7. The complex polar lipids were consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major cellular fatty acid components were iso-C15:0, anteiso-C15:0, iso-C16:0, and anteiso-C17:0, and the DNA G+C content was 40.5%. DNA-DNA relatedness of our novel strain and reference strain O. locisalsi KCTC 13253T, O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T was 45.7, 43.8, and 41.9%. From the results of phenotypic, chemotaxonomic, and phylogenetic analyses of strain TK1655T, we propose the novel species Oceanobacillus gochujangensis sp. nov. The type strain is TK1655T (=KCCM 101304T =KCTC 33014T =CIP 110582T =NBRC 109637T).  相似文献   

19.
Deinococcus radiodurans has attracted a great interest in the past decades due to its extraordinary resistance to ionizing radiation and highly efficient DNA repair system. Recent studies indicated that pprM is a putative pleiotropic gene in D. radiodurans and plays an important role in radioresistance and antioxidation, but its underlying mechanisms are poorly elucidated. In this study, pprM mutation was generated to investigate resistance to desiccation and oxidative stress. The result showed that the survival of pprM mutant under desiccation was markedly retarded compared to the wild strain from day 7–28. Furthermore, knockout of pprM increases the intercellular accumulation of ROS and the sensibility to H2O2 stress in the bacterial growth inhibition assay. The absorbance spectrum experiment for detecting the carotenoid showed that deinoxanthin, a carotenoid that peculiarly exists in Deinococcus, was reduced in the pprM mutant in the pprM mutant. Quantitative real time PCR showed decreased expression of three genes viz. CrtI (DR0861, 50%),CrtB (DR0862, 40%) and CrtO (DR0093, 50%), which are involved in deinoxanthin synthesis, and of Dps (DNA protection during starving) gene (DRB0092) relevant to ion combining and DNA protection in cells. Our results suggest that pprM may affect antioxidative ability of D. radiodurans by regulating the synthesis of deinoxanthin and the concentration of metal ions. This may provide new clues for the treatment of antioxidants.  相似文献   

20.
Calcitriol is an important drug used for treating osteoporosis, which can be produced from vitamin D3. The current method of producing calcitriol from vitamin D3 during cultivation of microbial cells results in low yields of calcitriol and high purification costs. Therefore, in this study, the steps of cell cultivation and bioconversion of vitamin D3 to calcitriol were separated. Cells of Pseudonocardia sp. KCTC 1029BP were utilized as a whole cell catalyst to produce a high level and yield of calcitriol from vitamin D3. In addition, the effects of bioconversion buffers, cyclodextrins, and metal salts on the production of calcitriol were comparatively examined and selected for incorporation in the bioconversion medium, and their compositions were statistically optimized. The optimal bioconversion medium was determined as consisting of 15 mM Trizma base, 25 mM sodium succinate, 2 mM MgSO4, 0.08 % β-cyclodextrin, 0.1 % NaCl, 0.2 % K2HPO4, and 0.03 % MnCl2. Using this optimal bioconversion medium, 61.87 mg/L of calcitriol, corresponding to a 30.94 % mass yield from vitamin D3, was produced in a 75-L fermentor after 9 days. This calcitriol yield was 3.6 times higher than that obtained using a bioconversion medium lacking β-cyclodextrin, NaCl, K2HPO4, and MnCl2. In conclusion, utilizing whole cells of Pseudonocardia sp. KCTC 1029BP together with the optimal bioconversion medium markedly enhanced the production of calcitriol from vitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号