首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Variations in codon usage between species are one of the major causes affecting recombinant protein expression levels, with a significant impact on the economy of industrial enzyme production processes. The use of codon-optimized genes may overcome this problem. However, designing a gene for optimal expression requires choosing from a vast number of possible DNA sequences and different codon optimization methods have been used in the past decade. Here, a comparative study of the two most common methods is presented using calf prochymosin as a model.  相似文献   

2.
An optimized fed-batch cultivation process for the production of the polyoma virus capsid protein VP1 in recombinant Escherichia coli BL21 bacteria is presented. The optimization procedure maximizing the amount of desired protein is based on a mathematical model. The model distinguishes an initial cell growth phase from a protein production phase initiated by inducer injection. A new approach to model the target protein formation rate was elaborated, where product formation is primarily dependent on the specific biomass growth rate. Lower growth rates led to higher specific protein concentrations. The model was identified from a series of fed-batch experiments designed for parameter identification purposes and possesses good prediction quality. Then the model was used to determine optimal open-loop control profiles by manipulating the substrate feed rates in both phases as well as the induction time. Feed-rate optimization has been solved using Pontryagin's maximum principle. The solution was validated experimentally. A significant improvement of the process performance index was achieved.  相似文献   

3.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A fully integrated process for the microbial production and recovery of the aromatic amino acid L-phenylalanine is presented. Using a recombinant L-tyrosine (L-Tyr) auxotrophic Escherichia coli production strain, a fed-batch fermentation process was developed in a 20-l-scale bioreactor. Concentrations of glucose and L-Tyr were closed-loop-controlled in a fed-batch process. After achieving final L-phenylalanine (L-Phe) titres >30 g/l the process strategy was scaled up to 300-l pilot scale. In technical scale fermentation L-phenylalanine was continuously recovered via a fully integrated reactive extraction system achieving a maximum extraction rate of 110 g/h (final purity >99%). It was thus possible to increase L-Phe/glucose selectivity from 15 mol% without to 20.3 mol% with integrated product separation.  相似文献   

5.
Accurate monitoring and control of industrial bioprocess requires the knowledge of a great number of variables, being some of them not measurable with standard devices. To overcome this difficulty, software sensors can be used for on-line estimation of those variables and, therefore, its development is of paramount importance. An Asymptotic Observer was used for monitoring Escherichia coli fed-batch fermentations. Its performance was evaluated using simulated and experimental data. The results obtained showed that the observer was able to predict the biomass concentration profiles showing, however, less satisfactory results regarding the estimation of glucose and acetate concentrations. In comparison with the results obtained with an Extended Kalman Observer, the performance of the Asymptotic Observer in the fermentation monitoring was slightly better.  相似文献   

6.
Glutaredoxin has been implicated in maintenance of a normal cellular thiol/disufide ratio and the regeneration of oxidatively damaged proteins. In order to obtain more information about these important regulatory proteins in cyanobacteria, we have previously cloned and expressed the first cyanobacterial glutaredoxin gene ssr2061 in Escherichia coli. In this work, the second glutaredoxin gene slr1562 was studied. About 90% of Grx2061 coded by ssr2061 was produced in a soluble form while 90% of Grx1562 coded by slr1562 was found in inclusion bodies. To improve the production of soluble Grx1562, we constructed two mutants: Grx1562NC with cysteines in conserved site substituted by serines, and Grx1562M with N-terminus hydrophobic region deletion. Only the latter mutant was successfully expressed in soluble form with increased glutaredoxin activity and showed less sensitivity in oxidative stress. Spectroscopic analysis shows that the structure of Grx1562M with less hydrophobic nature could give more opportunity for protein solubility and could improve the substrate catalytic efficiency. These results suggest that hydrophobic N-terminus determines the insolubility of Grx1562 and may provide another strategy for increasing expression level of soluble heterologous proteins in E. coli. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 3, pp. 383–391.  相似文献   

7.
The gene gaoA encoding the copper-dependent enzyme galactose oxidase (GAO) from Fusarium graminearum PH-1 was cloned and successfully overexpressed in E. coli. Culture conditions for cultivations in shaken flasks were optimized, and optimal conditions were found to be double-strength LB medium, 0.5% lactose as inducer, and induction at the reduced temperature of 25°C. When using these cultivation conditions ~24 mg of active GAO could be produced in shaken flasks per litre medium. Addition of copper to the fermentation medium decreased the enzyme production significantly. The His-tagged recombinant enzyme could be purified conveniently with a single affinity chromatography step. The purified enzyme showed a single band on SDS–PAGE with an apparent molecular mass of 66 kDa and had kinetic properties similar to those of the fungal wild-type enzyme.  相似文献   

8.
An Escherichia coli strain, JM109, was successfully engineered into an efficient hyaluronic acid (HA) producer by co-expressing the only known class-II HA synthase from a Gram-negative bacterium (Pasteurella multocida) and uridine diphosphate-glucose dehydrogenase from E. coli K5 strain. The engineered strain produced about 0.5 g/L HA in shake flask culture and about 2.0–3.8 g/L in a fed-batch fermentation process in a 1-L bioreactor. The sharp increase in viscosity associated with HA accumulation necessitated pure oxygen supplement to maintain fermentation in aerobic regime. Precursor supply during HA synthesis was probed by glucosamine supplement, which shortens biosynthesis pathway and eliminates one step requiring ATP. HA synthesis was increased with glucosamine supplement from 2.7 to 3.7 g/L (37%), which was mirrored with a concomitant 42% decrease in pure oxygen input, suggesting a close connection between energy metabolism and precursor supply. Decoupling HA synthesis from cell growth by using fosfomycin (an inhibitor for cell wall synthesis) led to a 70% increase in HA synthesis, suggesting detrimental effects on HA synthesis from cell growth via precursor competition. This study demonstrates a potentially viable process for HA based on a recombinant E. coli strain. In addition, the precursor supply limitation identified in this study suggests new engineering targets in subsequent metabolic engineering efforts.  相似文献   

9.
Chloramphenicol stabilizes pre-existing lac mRNA, but inhibits further accumulation by allowing rapid degradation of nascent message. Puromycin accelerates decay of pre-existing and new lac message by discharging protective ribo-somes. Both effects are partially reversed by the suA mutation.  相似文献   

10.
A nonlinear model of a recombinant Escherichia coli producing porcine growth hormone (pGH) fermentation was developed. The model was used to calculate a glucose feeding and temperature strategy to optimize the production of pGH. Simulations showed that the implementation of optimal feed and temperature profiles was sensitive to the maximum specific growth rate, and a mismatch could result in excessive acetate production and a significant reduction in pGH yield. An optimization algorithm was thus developed, using feedback control, to counter the effects of uncertainty in the specific growth rate and thus determine an optimal operating strategy for pGH production. This policy was experimentally implemented in a 10 L fermenter and resulted in a 125% increase in productivity over the previous best experimental result with this system—in spite of significant plant-model mismatch.  相似文献   

11.
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell’s productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.  相似文献   

12.
Escherichia coli cells expressing mink (Mustela vison) growth hormone were grown in a batch fermentation process. The expression level was estimated to be 27% of the total cellular protein after 3 h of induction with 1 mM isopropyl β-d-thiogalactoside (IPTG). If the expression of mink growth hormone (mGH) was induced with 0.2 mM IPTG, the concentration of target protein was slightly lower and was found to be 23% at the same time after induction. mGH expressed as inclusion bodies was solubilized in 8 M urea and renatured by dilution protocol at a protein concentration of 1.4–2.1 mg/ml in the presence of glutathione pair in a final concentration of 11.3 mM. [GSH]/[GSSG] ratio equal to 2/1 was used. Two-step purification process comprising of ion-exchange chromatography on Q-Sepharose and hydrophobic chromatography on Phenyl-Sepharose was developed. Some 25–30 mg of highly purified and biologically active mGH was obtained from 4 g of biomass. The method presented in this study allows producing large quantities of mGH and considering initiation of scientific investigation on mGH effect on mink in vivo and availability in fur industry.  相似文献   

13.

Background  

The overproduction of recombinant proteins in host cells often leads to their misfolding and aggregation. Previous attempts to increase the solubility of recombinant proteins by co-overproduction of individual chaperones were only partially successful. We now assessed the effects of combined overproduction of the functionally cooperating chaperone network of the E. coli cytosol on the solubility of recombinant proteins.  相似文献   

14.
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.  相似文献   

15.
Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, is a specific inhibitor of endothelial cell proliferation and angiogenesis. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in Escherichia coli by expressing via fusion with solubility-promoting peptides and optimizing the expression conditions. The rhEndostatin was expressed via fusion with glutathione S-transferase (GST) and NusA protein, respectively. It revealed that NusA protein enhanced the production of soluble rhEndostatin; but GST didn’t. By optimizing the expression conditions, the production of soluble NusA-rhEndostatin fusion protein was about 50% of total cellular proteins and about 90% of the products appeared in the cellular supernatant fraction. The soluble NusA-rhEndostatin fusion protein was purified by one-step hydrophobic interaction chromatography and NusA was removed by thrombin. Then rhEndostatin was purified by affinity chromatography and gel filtration chromatography. As a result, a simple and economical purification procedure for rhEndostatin isolation was obtained. The biological activity of the rhEndostatin was demonstrated in vitro using a human vascular endothelial cells (HuVECs) proliferation assay. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.  相似文献   

16.
Xylella fastidiosa was the first phytopathogen to be completely sequenced, and its genome revealed several interesting features to be used in functional studies. In the present work, the htpX gene, which encodes a protein involved in the heat shock response in other bacteria, was analyzed by RT-PCR by using cells derived from different cultural conditions. This gene was induced after a temperature upshift to 37°C after growth in minimal medium, XDM, but showed constitutive expression in rich medium or in XDM plus plant extracts. Sequences upstream to the htpX gene, containing a putative regulatory region, were also transferred to E. coli, and the thermoregulation was maintained in the new host, since it was constitutively transcribed at 37°C or 45°C in all culture media tested, but not at 28°C in minimal culture medium. The gene was also cloned into the expression vector pET32Xa/LIC, and the expression of the corresponding protein was confirmed by Western blotting.  相似文献   

17.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

18.
In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.  相似文献   

19.
Metabolic flux distributions of recombinant Escherichia coli BL21 expressing human-like collagen were determined by means of a stoichiometric network and metabolic balancing. At the batch growth stage, the fluxes of the pentose phosphate pathway were higher than the fluxes of the fed-batch growth phase and the production stage. After the temperature was increased, there was a substantially elevated energy demand for synthesizing human-like collagen and heat-shock proteins, which resulted in changes in metabolic fluxes. The activities of the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle were significantly enhanced, leading to a reduction in the fluxes of the pentose phosphate pathway and other anabolic pathways. The temperature upshift also caused an increase in NADPH production by isocitrate dehydrogenase in the tricarboxylic acid cycle. The metabolic model predicted the involvement of a transhydrogenase that generates additional NADH from NADPH, thereby increasing ATP regeneration in the respiratory chain. These data indicated that the maintenance energy for cellular activity increased with the increase in biomass in fed-batch culture, and that cell growth and synthesis of human-like collagen could clearly represent the changes in metabolic fluxes. At the production stage, more NADPH was used to synthesize human-like collagen than for maintaining cellular activity, cell growth, and cell propagation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Rhizo mucor miehei lipase (RML) is an industrially important enzyme, but its application is limited due to its high cost. In this study, a series of measures such as codon optimization, propeptide addition, combined use of GAP and AOX1 promoters, and optimization of culture conditions were employed to increase the expression of RML. Three transformants of the constitutive-inducible combined Pichia pastoris strains were generated by transforming the pGAPZαA-rml vector into the pPIC9K-rml/GS115 strain, which resulted in high-expression yields of RML. Using the shake flask method, highest enzyme activity corresponding to 140 U/mL was observed in the strain 3-17, which was about sixfold higher than that of pPIC9K-rml/GS115 or pGAPZαA-rml/GS115. After optimization of culture conditions by response surface methodology, the lipolytic activity of strain 3-17 reached 175 U/mL in shake flasks. An increase in the copy number simultaneously with the synergistic effect provided by two promoters led to enhanced degree of protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号