首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
miRNAs是一类负调控基因表达的内源性非编码小分子RNA,在细胞衰老过程中发挥重要作用. 细胞衰老是指可增殖细胞在各种应激下出现细胞周期阻滞,并且丧失增殖能力,进入一种不可逆的、相对稳定的状态. p53、p21、p16、SIRT1、胰岛素/IGF-1及mTOR等蛋白是衰老相关信号通路中的重要分子,参与细胞衰老过程. 研究表明,miRNAs可以通过调控这些衰老相关蛋白所在的信号通路,促进或延缓细胞衰老. 本文综述细胞衰老相关的miRNAs,以及它们对衰老相关信号通路的影响,为深化认识衰老和衰老相关疾病的分子机制奠定基础.  相似文献   

2.
端粒、端粒酶与细胞衰老   总被引:4,自引:0,他引:4  
端粒和端粒酶是现代生物学研究的热点,端粒的缺失与细胞的衰老,端粒酶的活性与细胞的老化及癌化均有密切的关系。章综述了端粒和端粒酶的结构和功能,及其与细胞衰老的关系,并在此基础之上展望了端粒酶在抗衰老、抑制肿瘤等方面的应用。  相似文献   

3.
The field of research on cellular senescence experienced a rapid expansion from being primarily focused on in vitro aspects of aging to the vast territories of animal and clinical research. Cellular senescence is defined by a set of markers, many of which are present and accumulate in a gradual manner prior to senescence induction or are found outside of the context of cellular senescence. These markers are now used to measure the impact of cellular senescence on aging and disease as well as outcomes of anti‐senescence interventions, many of which are at the stage of clinical trials. It is thus of primary importance to discuss their specificity as well as their role in the establishment of senescence. Here, the presence and role of senescence markers are described in cells prior to cell cycle arrest, especially in the context of replicative aging and in vivo conditions. Specifically, this review article seeks to describe the process of “cellular aging”: the progression of internal changes occurring in primary cells leading to the induction of cellular senescence and culminating in cell death. Phenotypic changes associated with aging prior to senescence induction will be characterized, as well as their effect on the induction of cell senescence and the final fate of cells reviewed. Using published datasets on assessments of senescence markers in vivo, it will be described how disparities between quantifications can be explained by the concept of cellular aging. Finally, throughout the article the applicational value of broadening cellular senescence paradigm will be discussed.  相似文献   

4.
The transition to reproductive senescence involves changes in neuroendocrine and ovarian functions, and is accelerated by activation of the aryl hydrocarbon pathway by environmental toxicants such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD). In this article, studies which provide evidence as to the possible mechanisms by which the aryl hydrocarbon receptor (AhR) acts in this capacity (i.e. disruption of ovarian, hypothalamic or suprachiasmatic nucleus function, or any combination of these) are reviewed, along with the normal physiological changes that occur during the transition to reproductive senescence in female humans and rodents. Based on findings that the AhR is evolutionarily conserved and necessary for normal fertility, we suggest that the AhR has not only a pathological but also a physiological role in the process of aging. Studies of realistic lifelong AhR activation by dioxins on the hypothalamic-pituitary-ovarian axis and its impact on the transition to reproductive senescence in the aging female are a previously neglected area of research that warrants further consideration.  相似文献   

5.
衰老是棉株或其某些器官发生导致生命活动自然终止的败坏过程,是棉株生长发育过程的必然归宿,熟相则是棉株吐絮成熟期的表现,是衰老的表现形式和结果,有早衰、贪青晚熟和正常成熟之分.衰老和熟相都是基因型与环境互作的结果.本文总结评述了棉花衰老的生理生态和分子生物学方面的研究进展,提出了依靠选育稳发型棉花品种、合理使用植物生长调节剂并综合运用农艺栽培措施调控棉株生长发育和衰老,实现正常熟相,进而提高棉花产量和品质.  相似文献   

6.
Zaĭnullin VG  Moskalev AA 《Genetika》2000,36(8):1013-1016
The current research literature on the mechanisms responsible for maintenance of the genomic stability and their role in cell senescence both in vivo and in vitro is reviewed. Various types of age-dependent genomic destabilization in senescent cells are considered. Genetic instability of senescent cells is assumed to be associated with the life span and aging of an entire organism.  相似文献   

7.
端粒和端粒酶与衰老研究   总被引:1,自引:0,他引:1  
衰老是一种多因素的复合调控过程,表现为染色体端粒长度的改变、DNA损伤、DNA的甲基化和细胞的氧化损伤等,并已形成了许多学说,而端粒学说成为衰老研究的热点之一.对与衰老紧密相关的因素———端粒、端粒酶的结构及其与衰老关系的研究进展进行综述,阐明对端粒—端粒酶的作用将会在抗衰老方面有着十分重要的理论价值及实际意义.  相似文献   

8.
The relationship between oxidants and organismal aging was first articulated through the free radical theory of aging. One of the major predictions of the free radical theory of aging is that oxidative stress shortens organisms’ lifespan because of an increased level of oxidants, which are damaging to macromolecules. However, challenging the role of oxidants in age‐related diseases, there is now sufficient evidence that antioxidant supplements do not provide significant health benefits. Interestingly, in addition to an increase in oxidant‐mediated macromolecules damage, there is convincing experimental data to support the role of senescent cells in the process of aging. Here, the current knowledge regarding the role of oxidants and cellular senescence in organismal aging is reviewed and it is proposed that, in addition to the role of oxidants as inducers of macromolecular damage, oxidants may also function as regulators of signaling pathways involved in the establishment of cellular senescence. If this role for oxidants is established, it may be necessary to modify the free radical theory of aging from “Organisms age because cells accumulate reactive oxygen species‐dependent damage over time” to: “Organisms age because cells accumulate oxidants’‐dependent damage and oxidants’‐dependent senescent characteristics over time.”  相似文献   

9.
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.  相似文献   

10.
Cellular theory of aging states that human aging is the result of cellular aging, in which an increasing proportion of cells reach senescence. Senescence, from the Latin word senex, means “growing old,” is an irreversible growth arrest which occurs in response to damaging stimuli, such as DNA damage, telomere shortening, telomere dysfunction and oncogenic stress leading to suppression of potentially dysfunctional, transformed, or aged cells. Cellular senescence is characterized by irreversible cell cycle arrest, flattened and enlarged morphology, resistance to apoptosis, alteration in gene expression and chromatin structure, expression of senescence associated- β-galactosidase (SA-β-gal) and acquisition of senescence associated secretory phenotype (SASP). In this review paper, different types of cellular senescence including replicative senescence (RS) which occurs due to telomere shortening and stress induced premature senescence (SIPS) which occurs in response to different types of stress in cells, are discussed. Biomarkers of cellular senescence and senescent assays including BrdU incorporation assay, senescence associated- β-galactosidase (SA-β-gal) and senescence-associated heterochromatin foci assays to detect senescent cells are also addressed.  相似文献   

11.
12.
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.  相似文献   

13.
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.  相似文献   

14.
Increased cardiovascular disease in aging is partly a consequence of the vascular endothelial cell (EC) senescence and associated vascular dysfunction. In this contest, EC senescence is a pathophysiological process of structural and functional changes including dysregulation of vascular tone, increased endothelium permeability, arterial stiffness, impairment of angiogenesis and vascular repair, and a reduction of EC mitochondrial biogenesis. Dysregulation of cell cycle, oxidative stress, altered calcium signaling, hyperuricemia, and vascular inflammation have been implicated in the development and progression of EC senescence and vascular disease in aging. A number of abnormal molecular pathways are associated with these underlying pathophysiological changes including Sirtuin 1, Klotho, fibroblast growth factor 21, and activation of the renin angiotensin-aldosterone system. However, the molecular mechanisms of EC senescence and associated vascular impairment in aging are not completely understood. This review provides a contemporary update on molecular mechanisms, pathophysiological events, as well functional changes in EC senescence and age-associated cardiovascular disease. This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.  相似文献   

15.
人口老龄化及其伴随的各种疾病已成为全球性健康问题,细胞外基质在老化过程中发生的变化及对机体产生的影响逐渐成为研究衰老的热点。在机体发育和衰老过程中,细胞外基质不仅可以为细胞提供结构支架、组织连接,调节实质细胞的形态、增殖、分化、代谢、迁移等生理活动,并且其本身组成成分、合成、代谢、重构等变化也会对机体各系统的功能产生深刻影响,具体表现为骨骼肌僵硬、左心室功能受损、神经突触传导抑制等。本文通过介绍机体在衰老过程中,运动、循环、神经等系统细胞外基质的变化及相关机制的最新研究进展,从非细胞角度探讨老化的机制,了解衰老的过程。  相似文献   

16.
Many laboratory models used in aging research are inappropriate for understanding senescence in mammals, including humans, because of fundamental differences in life history, maintenance in artificial environments, and selection for early aging and high reproductive rate. Comparative studies of senescence in birds and mammals reveal a broad range in rates of aging among a variety of taxa with similar physiology and patterns of development. These comparisons suggest that senescence is a shared property of all vertebrates with determinate growth, that the rate of senescence has been modified by evolution in response to the potential life span allowed by extrinsic mortality factors, and that most variation among species in the rate of senescence is independent of commonly ascribed causes of aging, such as oxidative damage. Individuals of potentially long‐lived species, particularly birds, appear to maintain high condition to near the end of life. Because most individuals in natural populations of such species die of aging‐related causes, these populations likely harbor little genetic variation for mechanisms that could extend life further, or these mechanisms are very costly. This, and the apparent evolutionary conservatism in the rate of increase in mortality with age, suggests that variation in the rate of senescence reflects fundamental changes in organism structure, likely associated with the rate of development, rather than physiological or biochemical processes influenced by a few genes. Understanding these evolved differences between long‐lived and short‐lived organisms would seem to be an essential foundation for designing therapeutic interventions with respect to human aging and longevity.  相似文献   

17.
In vitro cellular senescence of human diploid fibroblast has been a good model for aging research, which shows similar phenotypes to in vivo aging. Gene expression profiling would provide an insight to understand the mechanism of senescence. Using cDNA microarray containing 384 known genes, we compared the expression profiles of three different types of aging models: replicative senescence, fibroblasts from progeria or from elderly donor. Although all of them showed senescence phenotypes, distinct sets of genes were altered in each group. Pairwise plots or cluster analysis of activation fold of gene expression revealed closer relationships between fibroblasts from progeria or from old individual, but not between replicative senescence fibroblasts and either models. Differential expression pattern of several genes were confirmed by RT-PCR. We suggest that the replicative senescence model might behave differently to other types of aging models due to the distinct gene expression.  相似文献   

18.
19.
Seo YH  Jung HJ  Shin HT  Kim YM  Yim H  Chung HY  Lim IK  Yoon G 《Aging cell》2008,7(6):894-907
Glycogen biogenesis and its response to physiological stimuli have often been implicated in age-related diseases. However, their direct relationships to cell senescence and aging have not been clearly elucidated. Here, we report the central involvement of enhanced glycogenesis in cellular senescence. Glycogen accumulation, glycogen synthase (GS) activation, and glycogen synthase kinase 3 (GSK3) inactivation commonly occurred in diverse cellular senescence models, including the liver tissues of aging F344 rats. Subcytotoxic concentrations of GSK3 inhibitors (SB415286 and LiCl) were sufficient to induce cellular senescence with increased glycogenesis. Interestingly, the SB415286-induced glycogenesis was irreversible, as were increased levels of reactive oxygen species and gain of senescence phenotypes. Blocking GSK3 activity using siRNA or dominant negative mutant (GSK3beta-K85A) also effectively induced senescence phenotypes, and GS knock-down significantly attenuated the stress-induced senescence phenotypes. Taken together, these results clearly demonstrate that augmented glycogenesis is not only common, but is also directly linked to cellular senescence and aging, suggesting GSK3 and GS as novel modulators of senescence, and providing new insight into the metabolic backgrounds of aging and aging-related pathogenesis.  相似文献   

20.
生物体衰老与复制衰老--体内与体外研究   总被引:16,自引:0,他引:16  
体外连续培养的细胞在有人数的细胞分裂后,更新换代合成DNA及分裂的能力,最后导致增殖能力的丧失,但基本代谢过程仍能维持,这种现象称为复制衰老。本文讨论了复制衰老现象存在的普遍性,描述了衰老细胞伯特征,对复制衰老和生物体衰老之间的联系进行了重点分析。现有的研究虽然还不完全,但都提示复制衰老是生物体衰老在细胞水平上的反映,并充分肯定了复制衰老是一个较好的研究机体衰老的模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号