首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isomeric alkaloids jatrorrhizine and columbamine isolated from the whole plant of Argemone mexicana were assessed against spore germination of some fungi, e.g. Alternaria cajani, Bipolaris sp., Helminthosporium sp., Fusarium udum and Curvularia sp. Both the alkaloids were effective against most of the fungi tested. Jatrorrhizine was highly effective against spore germination of Bipolaris sp., Fusarium udum and Curvularia sp. at 5000 ppm concentration, whereas columbamine was highly effective against Alternaria cajani, Helminthosporium sp. and Fusarium udum at 5000 ppm.  相似文献   

2.
Cedrela P. Browne is a genus of trees, strictly related to Toona, in the Meliaceae, a family of flowering plants in the order Sapindales, which is among the most diverse sources of secondary metabolites in the Angiospermae. The most abundant metabolites in these genera are limonoids, tetranortriterpenes possessing diverse structural features, apotirucallanes, tirucallanes, and other triterpenes. The chemical constituents isolated from the genera Cedrela and Toona over the past decades, together with their biological activities, have been compiled in this article. The allelochemical and the phytotoxic activity of limonoids and triterpenoids seem to play a crucial role in the ecological function of these metabolites. While, the most promising use in human field seems related to their antimalarial and anti-inflammatory effects, even that further investigation are still needed.  相似文献   

3.
Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential.  相似文献   

4.
Restriction fragment length polymorphism (RFLP) of the total DNA ofBipolaris andCurvularia species was analysed using arbitrarily chosen genomic clones of DNA fromCurvularia lunata andBipolaris maydis as probes. Clear differences among species in both genera, resulting in different banding positions, were obtained with some probe-enzyme combinations. Intraspecific polymorphism in banding positions with these probe-enzyme combinations was slight. These analyses allow discrimination between the species. DNA fingerprinting with intrageneric probes is a potentially useful tool for species separation and identification inBipolaris andCurvularia when coupled with another characteristic such as conidial morphology.Curvularia aeria comb. nov. was proposed forCurvularia lunata var.aeria on the basis of differences in RFLP banding patterns and differences in conidial morphology.  相似文献   

5.
Apiospora and Arthrinium have undergone a period of upheaval with disparate phylogenic affiliation during the past ten years. Recently, they were divided into two separate clades with the majority being Apiospora and several species changing genus from Arthrinum to Apiospora. The first genome annotation became available in 2020, and the potential for novel secondary metabolite production appears very high in these yet unexplored genera compared to other more famous filamentous fungi. In this review, we present the current state of knowledge of 269 secondary metabolites isolated from the two fungal genera combined and highlight some of the compounds with known biological or toxic effects.  相似文献   

6.
Fungi are the cause of numerous plant diseases. Leading plant pathogens include various species of the genera Curvularia and Bipolaris. In this study of 21 airborne isolates, seven species with pathogenic potential for rice crops were identified (Curvularia aeria, Curvularia clavata, Curvularia pallescens, Curvularia trifolii, Bipolaris australiensis, Bipolaris hawaiiensis and Bipolaris sorghicola). For all isolates, optimum temperatures for mycelial growth and germination of conidia were determined over the 10–40 °C range. All strains were mesophilic, and optimum temperatures for germination of conidia lay within the range favourable for colony growth. In addition to their practical application in protecting the rice crop, these findings are of ecological interest in that they improve awareness of the aeromycological biodiversity of the study area.  相似文献   

7.
《Microbiological research》2014,169(4):262-278
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.  相似文献   

8.
Salvatore  Massimo  Francesco 《Phytochemistry》2009,70(9):1082-1091
N-Prenyl secondary metabolites (isopentenylazo-, geranylazo-, farnesylazo- and their biosynthetic derivatives) represent a family of extremely rare natural products. Only in recent years have these alkaloids been recognized as interesting and valuable biologically active secondary metabolites. To date about 35 alkaloids have been isolated from plants mainly belonging to the Rutaceae family, and from fungi, bacteria, and/or obtained by chemical synthesis. These metabolites comprise anthranilic acid derivatives, diazepinones, and indole, and xanthine alkaloids. Many of the isolated prenylazo secondary metabolites and their semisynthetic derivatives are shown to exert valuable in vitro and in vivo anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, and anti-fungal effects. The aim of this comprehensive review is to examine the different types of prenylazo natural products from a chemical, phytochemical and biological perspective.  相似文献   

9.
Fungi that invade plant inner tissues without inducing disease symptoms are known as fungal endophytes. They represent a promising and tremendous reservoir of natural products with valuable biological potentials for application in medicine, agriculture and industry. Among the numerous existing endophytic fungi, Aspergillus strains constitute one of the most prolific sources of secondary metabolites with diverse chemical classes and interesting biological activities. This review covers the literature of the year 2020, reporting the isolation of 202 compounds obtained from more than 10 different endophytic Aspergillus species associated with different host plants. Analysis and interpretation of the collected data revealed that chemical investigation of endophytes belonging to the genus Aspergillus may greatly contribute to the discovery of potential drug leads. The isolated metabolites were chemically various and exhibited diverse biological activities such as antibacterial, anti-cancer, anti-plasmodial, anti-inflammatory, antioxidant, immunosuppressive and antifungal activities. Moreover, adoption of advanced technology in molecular biology together with modern chemical tools is anticipated to improve the discovery of new biopharmaceuticals from this valuable microbial world in the future.  相似文献   

10.
Terpenes are a widespread group of secondary metabolites that can be found in various family plants such as the Lamiaceae. In view of their numerous valuable biological activities, the industrial production of concrete terpenes and essential oils rich in the substances is intensively studied. Monoterpenes constitute a significant part of the whole group of the aforementioned secondary metabolites. This is due to their numerous biological activities and their ability to permeate the skin. Despite the fact that these substances have gain popularity, they are not comprehensively characterized. The presented review is based on studies of the biological activities of the most important monoterpenes and the essential oils rich in these compounds. The authors focused attention on antioxidant activity, inhibition towards acetyl‐ and butyrylcholinesterase, and α‐amylase and α‐glucosidase, antifungal, hepatoprotective, sedative properties, and their skin permeation enhancement.  相似文献   

11.
Two new metabolites, a dimeric chromanone, bipolarinone (1), and a phthalide, bipolarilide (2), as well as eight known compounds have been isolated from the seagrass-derived fungus Bipolaris sp. PSU-ES64. The structures were elucidated by analysis of spectroscopic data. The absolute configuration of 1 was determined by circular dichroism spectroscopy, Mosher's method, and NOEDIFF data. The antioxidant and antimicrobial activities of the isolated compounds were examined.  相似文献   

12.
Many Chrysobalanaceae species, in special Licania and Parinari, are widely used in folk medicine to treat several diseases. This review describes some aspects of their ethnopharmacology potential, biological activities and the secondary metabolites reported so far for Chrysobalanaceae. The chemical constituents of this family include triterpenoids, diterpenoids, steroids and phenylpropanoids like flavonoids as well as chromones derivatives.  相似文献   

13.
Actinomycetes are a rich source for secondary metabolites with a diverse array of biological activities. Among the various genera of actinomycetes, the genus Saccharopolyspora has long been recognized as a potential source for antibiotics and other therapeutic leads that belong to diverse classes of natural products. Members of the genus Saccharopolyspora have been widely reported from several natural sources including both terrestrial and marine environments. A plethora of this genus has been chemically investigated for the production of novel natural products with interesting pharmacological effects. Therefore, Saccharopolyspora is considered one of the pharmaceutical important genera that could provide further chemical diversity with potential lead compounds. In this review, the literature from 1976 until December 2018 was covered, providing a comprehensive survey of all natural products derived from this genus and their semi-synthetic derivatives along with their biological activities, whenever applicable. Moreover, the biological diversity of Saccharopolyspora species and their habitats were also discussed.  相似文献   

14.
Plants have a long history as therapeutics in the treatment of human diseases and have been used as source of medicines for ages. Searching for new biologically active natural products, many plants and herbs are screened for natural products with pharmacological activities. In this field, the genus Inula, which comprises more than 100 species, several of them being used in traditional medicine, is very important, especially due to the finding that several of the isolated pure secondary metabolites proved to possess important biological activities. Inula species have been reported as rich sources of sesquiterpene lactones, including eudesmanes, germacranes, guaianes, and dimeric structures, and since 2006 ca. 400 secondary metabolites, including more than 100 new natural products, some of them with relevant pharmacological activities, have been identified. Herein, we critically compile and update the information regarding the types of secondary metabolites found in the genus Inula and the progress in their isolation.  相似文献   

15.
Bioactive compounds from marine actinomycetes   总被引:1,自引:0,他引:1  
Actinomycetes are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Among its various genera, Streptomyces, Saccharopolyspora, Amycolatopsis, Micromonospora and Actinoplanes are the major producers of commercially important biomolecules. Several species have been isolated and screened from the soil in the past decades. Consequently the chance of isolating a novel actinomycete strain from a terrestrial habitat, which would produce new biologically active metabolites, has reduced. The most relevant reason for discovering novel secondary metabolites is to circumvent the problem of resistant pathogens, which are no longer susceptible to the currently used drugs. Existence of actinomycetes has been reported in the hitherto untapped marine ecosystem. Marine actinomycetes are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, insecticidal and enzyme inhibition. Bioactive compounds from marine actinomycetes possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens.  相似文献   

16.
滇西北高寒地区分布着丰富的黄芪属植物资源,该属植物“根际效应”明显,其根际微生物极具抗菌药用资源研究价值。【目的】认知滇西北高寒特境中甸黄芪根际微生物的物种多样性,探究其可培养菌株次生代谢产物的化学多样性及抗菌、抗生物膜活性。【方法】采用宏基因组和微生物纯培养方法对中甸黄芪植物根际微生物进行物种多样性分析,同时采用高效液相色谱(high performance liquid chromatography,HPLC)、超高效液相色谱-质谱联用法(ultra-performance liquid chromatography-mass spectrometry,UPLC-MS)结合“微量肉汤稀释法” “孔板法”等多级联合筛选策略综合评估可培养菌株的抗菌活性药源研究价值。【结果】对中甸黄芪根际土壤样本的微生物分类操作单元(operational taxonomic units,OTU)进行分类注释,得到22门54纲105目187科316属856种微生物,其中优势菌群为慢生根瘤菌属。纯培养共获得27属54种95株可培养菌株,包括20属33种54株细菌和7属21种41株真菌,优势属分别为芽孢杆菌属和青霉属。其中,1株细菌Pseudomonas tolaasii ZTB4和3株真菌Aspergillus tabacinus ZNF17、Lecanicillium aphanocladii ZNF15、Umbelopsis nana ZTF31的次生代谢产物具有广谱抗菌活性。同时,菌株ZTB4和ZNF17的次生代谢产物也显示出优秀的抗耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)生物膜活性,并已验证这2株菌株的主要活性成分分别为环脂肽类与黄酮类。【结论】中甸黄芪植物根际微生物物种多样性较为丰富,其可培养菌株次生代谢产物有较好的化学多样性和抗菌、抗生物膜活性。研究结果为我国特境特色微生物药用资源的开发利用提供理论依据。  相似文献   

17.
Six different varieties of date-palm viz. Sukhari, Saggae, Rotana, Kholasi, Rashoodia and Nabtat Ali, were screened for seed-borne fungi. Eleven species belonging to nine different genera of fungi were isolated. The genera isolated were Alternaria, Eurotium, and Fusarium (two species), Aspergillus, Drechslera, Penicillium, Rhizopus, and Curvularia (one species each). This is the first record of seed-borne fungi from Phoenix dactyliera L. in Saudi Arabia.  相似文献   

18.
The objectives of this study were to evaluate the microbial prevalence inside six repositories of the National Archive of the Republic of Cuba in 2?months of the year and to examine some of the physiological features of fungi isolated in order to evaluate their potential for biodeterioration. The microbiological sampling was conducted in February and September using a slit impactor as air sampler. Appropriate selective culture media were used to isolate fungi and bacteria. Temperature and relative humidity were measured during the samplings. The cellulolytic activity and the production of acids and pigments of the fungi isolated were qualitatively determined. Total viable microbiota and bacteria concentrations were greater in February while the fungal concentration was higher in September. Aspergillus, Cladosporium, Penicillium, Curvularia and Alternaria were the predominant fungal genera in February while Cladosporium prevailed in September, although Fusarium, Mucor and Neurospora genera were also isolated in this month. The fungi isolated were capable of degrading cellulose and excreting pigments and acids. The Gram-positive bacteria group prevailed in the air and Corynebacterium, Streptomyces, Bacillus, Streptococcus, Staphylococcus, Enterobacter and Serratia were some of the genera identified.  相似文献   

19.
Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.  相似文献   

20.
杜仲内生真菌的抑菌活性筛选   总被引:15,自引:1,他引:14  
以金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌为测试菌种。对杜仲(Eucommia ulmoides Oliv.)根、茎、叶中分离出的20株内生真菌及其次生代谢物进行抗菌活性筛选。结果表明:有15个菌株至少对1种实验细菌具有抑菌活性,19株的代谢产物至少对1种实验细菌具有抑菌活性,其中有3株内生真菌及其次生代谢产物对测试病原细菌均有较强抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号