首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the effects of membrane phospholipids on the functionof high-conductance,Ca2+-activatedK+ channels from the basolateralcell membrane of rabbit distal colon epithelium by reconstituting thesechannels into planar bilayers consisting of different 1:1 mixtures ofphosphatidylethanolamine (PE), phosphatidylcholine (PC),phosphatidylserine (PS), and phosphatidylinositol (PI). At low ambientK+ concentrations single-channelconductance is higher in PE/PS and PE/PI bilayers than in PE/PCbilayers. At high K+concentrations this difference in channel conductance is abolished. Introducing the negatively charged SDS into PE/PC bilayersincreases channel conductance, whereas the positively chargeddodecyltrimethylammonium has the opposite effect. All these findingsare consistent with modulation of channel current by the charge of thelipid membrane surrounding the channel. But theK+ that permeates the channelsenses only a small fraction of the full membrane surface potential ofthe charged phospholipid bilayers, equivalent to separation of theconduction pathway from the charged phospholipid head groups by 20 Å. This distance appears to insulate the channel entrancefrom the bilayer surface potential, suggesting large dimensions of thechannel-forming protein. In addition, in PE/PC and PE/PI bilayers, butnot in PE/PS bilayers, the open-state probability of the channeldecreases with time ("channel rundown"), indicating thatphospholipid properties other than surface charge are required tomaintain channel fluctuations.

  相似文献   

2.
The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin decreases the channel conductance in cholesterol-containing bilayers while it does not affect the channel conductance in ergosterol-containing membranes. It is demonstrated that the insertion of styryl dyes, such as RH 421, RH 237 or RH 160, in bilayers with either cholesterol or ergosterol leads to the increase of the current amplitude of amphotericin B pores. Introduction of 5α-androstan-3β-ol into a membrane-forming solution increases the amphotericin B channel conductance in a concentration-dependent manner. All the effects are likely to be attributed to the influence of the membrane dipole potential on the conductance of single amphotericin B channels. However, specific interactions of some dipole modifiers with polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5α-androstan-3β-ol. These findings suggest that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.  相似文献   

3.
Recently, we showed that the effect of dipole modifiers (flavonoids and styrylpyridinium dyes) on the conductance of single amphotericin B (AmB) channels in sterol-containing lipid bilayers primarily resulted from changes in the membrane dipole potential. The present study examines the effect of dipole modifiers on the AmB multi-channel activity. The addition of phloretin to cholesterol-containing membranes leads to a significant increase in the steady-state AmB-induced transmembrane current. Quercetin significantly decreases and RH 421 increases the current through ergosterol-containing bilayers. Other tested flavonoids and styrylpyridinium dyes do not affect the channel-forming activity of AmB independently on the sterol composition of the bilayers. The effects obtained in these trials may instead be attributed to the direct interaction of dipole modifiers with AmB/sterol complexes and not to the effect of dipole potential changes. The presence of double bonds in the Δ7 and Δ22 positions of sterol molecules, the number of conjugated double bonds and amino sugar residues in polyene molecules, and the conformation and adsorption plane of dipole modifiers are important factors impacting this interaction.  相似文献   

4.
An alpha-toxin-binding membrane protein, isolated from the head and thoracic ganglia of the locus (Locusta migratoria), was reconstituted into planar lipid bilayers. Cholinergic agonists such as acetylcholine, carbamylcholine, and suberyldicholine induced fluctuations of single channels, which suggests that the protein represents a functional cholinergic receptor channel. The antagonist d-tubocurarine blocked the activation of the channels, whereas hexamethonium had only a weak effect; similar properties have been described for nicotinic insect receptors in situ. The channel was selectively permeable to monovalent cations but was impermeable to anions. The conductance of the channel (75 pS in 100 mM NaCl) was independent of the type of agonist used to activate the receptor. Kinetic analysis of the channel gating revealed that, at high agonist concentrations (50 microM carbamylcholine), more than one closed state exists and that multiple gating events, bursting as well as fast flickering, appeared. At very high agonist concentrations (500 microM carbamylcholine), desensitization was observed. Channel kinetics were dependent on the transmembrane potential. Comparing the conductance, the kinetics, and the pharmacology of nicotinic acetylcholine receptor from insect ganglia and fish electroplax reconstituted into bilayers revealed obvious similarities but also significant differences.  相似文献   

5.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

6.
The interaction of the polycationic decapeptide polymyxin B with asymmetric planar bilayers from lipopolysaccharide and phospholipid monolayers, which resemble the lipid matrix of the outer membrane of Gram-negative bacteria, was investigated. The addition of polymyxin B in micromolar amounts to the lipopolysaccharide side of the asymmetric bilayers resulted, under voltage-clamp conditions, in a fast macroscopic increase of their ionic conductance, whereas the polymyxin B nonapeptide induced no significant conductance changes. The polymyxin B induced macroscopic conductance exhibited large fluctuations and was strongly dependent on the amplitude and polarity of the transmembrane potential. The temporal pattern and amplitudes of the fluctuations were characterized by power spectra of the membrane currents and their variances, respectively. In the initial phase following peptide addition, the conductance changes appeared to be channellike discrete fluctuations. The lifetimes of the fluctuations were exponentially distributed, and the mean lifetimes were strongly voltage-dependent, ranging from approximately 30 ms at +80 mV (positive at the side opposite to peptide addition) to less than 5 ms at reverse polarity. The conductance amplitudes of the single fluctuations exhibited a broad distribution with a mean of 2 nS. A comparison of the features of the macroscopic conductance and of the discrete fluctuations showed that the former can basically be understood as a superposition of a large number of the latter. From the amplitudes of the fluctuations, the diameter of the polymyxin-induced lesions was estimated to about 3 nm. The experimental findings can be understood by assuming a detergent-like action of polymyxin B.  相似文献   

7.
The effects of the polyene antibiotic filipin on the conductance and permeability of planar lipid bilayers were investigated under voltage-clamp conditions. The membrane conductance of lipid bilayers containing no cholesterol was not affected by filipin. In the presence of cholesterol containing lipid bilayers, filipin induced a 10(4)-10(5)-fold increase in transmembrane conductance. This conductance increase was dependent on the ionic species present in solution, decreasing in the following order: GCsCl greater than GNaAc greater than GKCl greater than GNaCl greater than CaCl2 greater than GNa2SO4 greater than GBaCl2 greater than GMgCl2. Reversal potential measurements in simple biionic conditions revealed the following relative permeability sequence: PK greater than PCl greater than PNa approximately Pac approximately PBa greater than PCs greater than PMg approximately PCa greater than Psulphate. The filipin-sterol mediated increase in membrane conductance was independent of the membrane potential. The increase in membrane current following a step alteration in membrane potential occurred instantaneously and had no dependence on the previous value of the holding membrane potential. We propose that the filipin-sterol complex forms ion channels in lipid membranes. These channels are found in a single configuration (open state) and select preferentially monovalent cations or anions over divalent ions. Our experimental results are discussed in relation to the effects of other polyene antibiotics on the membrane permeability, and also in relation to experimental problems previously reported with the use of filipin in planar lipid bilayers.  相似文献   

8.
The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.  相似文献   

9.
Outer membrane protein A (OmpA), a major structural protein of the outer membrane of Escherichia coli, consists of an N-terminal 8-stranded beta-barrel transmembrane domain and a C-terminal periplasmic domain. OmpA has served as an excellent model for studying the mechanism of insertion, folding, and assembly of constitutive integral membrane proteins in vivo and in vitro. The function of OmpA is currently not well understood. Particularly, the question whether or not OmpA forms an ion channel and/or nonspecific pore for uncharged larger solutes, as some other porins do, has been controversial. We have incorporated detergent-purified OmpA into planar lipid bilayers and studied its permeability to ions by single channel conductance measurements. In 1 M KCl, OmpA formed small (50-80 pS) and large (260-320 pS) channels. These two conductance states were interconvertible, presumably corresponding to two different conformations of OmpA in the membrane. The smaller channels are associated with the N-terminal transmembrane domain, whereas both domains are required to form the larger channels. The two channel activities provide a new functional assay for the refolding in vitro of the two respective domains of OmpA. Wild-type and five single tryptophan mutants of urea-denatured OmpA are shown to refold into functional channels in lipid bilayers.  相似文献   

10.
The effect of the membrane dipole potential (φ d ) on conductance and the steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate, and chloride was shown. The φ d value varied with the introduction of phloretin to membrane bathing solutions, which reduces φ d and RH 421, which increases φ d . It was established that, in all studied systems, an increase in the membrane dipole potential caused a decrease in the steady-state number of open channels. In systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are one order lower than those of systems that contain sodium chloride. At the same time, the conductance (g) of single SRE channels in the membranes bathed in NaCl solution increases with increase in φ d and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the φ d . The latter is due to the lack of cation/anion selectivity of the SRE channels in these systems. The different channel-forming activity of SRE in the experimental systems is determined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.  相似文献   

11.
Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends.  相似文献   

12.
This paper presents calculations of the shielded dipole potential in the interior of a pore piercing a lipid membrane that is at a potential V0 with respect to the aqueous solution. Except in the case of long narrow pores, there is substantial shielding of the membrane dipole potential. The associated dipole field never extends a significant distance into the aqueous region. The fact that the single-channel conductance of gramicidin B is only twice as large in glyceryl monooleate membranes as in phosphatidyl choline (PC) membranes, even though PC is approximately 120 mV more positive with respect to water, is interpreted in terms of the potential energy profile calculated for a gramicidin-like channel. It is demonstrated that the membrane dipole potential can significantly affect channel conductance only if the pore is narrow and if the peak in the potential energy profile occurs in the pore interior.  相似文献   

13.
B. Dufy  J.L. Barker 《Life sciences》1982,30(22):1933-1941
Voltage clamp recordings of GH3/B6 pituitary cells reveal the presence of non linear steady state membrane properties at the level of the resting potential (about ?41 mV). Clamping the cells to potentials more depolarized than ?60 mV is associated with a potential dependent increase in membrane conductance and membrane current variance. Tetra-ethylammonium (TEA), Cobalt (Co2+) and methoxy-verapamil (D-600) each attenuate these potential-dependent changes. Spectral analysis of membrane current fluctuations shows that power spectral densities calculated for fluctuations occuring over the ? 70 to ? 40 mV range declin? monotonically as a function of frequency, while spectra derived from fluctuations obtained over the ? 20 mV to 0 mV range decline as the square of frequency and are usually well fitted by a single Lorentzian equation. The half-power frequency of these spectra varies from 45 to 65 Hz. If we assume that the activities of two-state (open-closed) ion channels underlie the electrical behaviour of the membrane at the resting potential and at more depolarized levels, then the results suggests the presence of K+ ion channels whose activation depends both on potential and Ca2+ ions. These K+ ion channels have estimated electrical properties (conductance : 15 ps ; duration : 3 msec) similar to those present in other excitable membranes.  相似文献   

14.
The kinetics of the opening and closing of individual ion-conducting channels in lipid bilayers doped with small amounts of excitability-inducing material (EIM) are determined from discrete fluctuations in ionic current. The kinetics for the approach to steady-state conductance during voltage clamp are determined for lipid bilayers containing many EIM channels. The two sets of measurements are found to be consistent, verifying that the voltage-dependent conductance of the many-channel EIM system arises from the opening and closing of individual EIM channels. The opening and closing of the channels are Poisson processes. Transition rates for these processes vary exponentially with applied potential, implying that the energy difference between the open and closed states of an EIM channel is linearly proportional to the transmembrane electric field. A model incorporating the above properties of the EIM channels predicts the observed voltage dependence of ionic conductance and conductance relaxation time, which are also characteristic of natural electrically excitable membranes.  相似文献   

15.
(1) Na+ currents and Na+-current fluctuations were measured in myelinated frog nerve fibres at 15 degrees C during 7.7 ms depolarizations to V = 40, 60 and 80 mV. (2) The conductance gamma of a single Na+ channel and the number No of channels per node were calculated from ensemble average values of the mean Na+ current and the variance of Na+-current fluctuations. (3) For a hyperpolarizing holding potential of VH = -28 mV the mean values of the channel conductance and number were gamma = 9.8 pS and No = 74000. (4) After changing the holding potential to the resting potential (VH = 0) the conductance gamma increased by a factor of 1.37 whereas the number No decreased by a factor of 0.60. (5) Addition of 8 nM tetrodotoxin at a holding potential of VH = -28 mV increased gamma by a factor of 1.55 and reduced No by a factor of 0.25. (6) The increase of the channel conductance at reduced channel numbers suggests negative cooperativity between Na+ channels in the nodal membrane.  相似文献   

16.
Pleurocidin, a 25-residue α helical cationic peptide, isolated from skin mucous secretions of the winter flounder, displays a strong anti-microbial activity and appears to play a role in innate host defence. This peptide would be responsible for pore formation in the membrane of bacteria leading to lysis and therefore death. In this study, we investigated the behaviour of pleurocidin in different planar lipid bilayers to determine its mechanism of membrane permeabilisation. Macroscopic conductance experiments showed that pleurocidin did not display a pore-forming activity in neutral phosphatidylcholine/phosphatidylethanolamine (PC/PE) lipid bilayers. However, in 7:3:1 PC/PE/phosphatidylserine (PS) lipid bilayers, pleurocidin showed reproducible I/V curves at different peptide concentrations. This activity is confirmed by single-channel experiments since well-defined ion channels were obtained if the lipid mixture was containing an anionic lipid (PS). The ion channel characteristics such as—no voltage dependence, only one unitary conductance, linear relation ship current-voltage—, are not in favour of the membrane permeabilisation according to the barrel model but rather by the toroidal pore formation.  相似文献   

17.
Pleurocidin, a 25-residue alpha helical cationic peptide, isolated from skin mucous secretions of the winter flounder, displays a strong anti-microbial activity and appears to play a role in innate host defence. This peptide would be responsible for pore formation in the membrane of bacteria leading to lysis and therefore death. In this study, we investigated the behaviour of pleurocidin in different planar lipid bilayers to determine its mechanism of membrane permeabilisation. Macroscopic conductance experiments showed that pleurocidin did not display a pore-forming activity in neutral phosphatidylcholine/phosphatidylethanolamine (PC/PE) lipid bilayers. However, in 7:3:1 PC/PE/phosphatidylserine (PS) lipid bilayers, pleurocidin showed reproducible I/V curves at different peptide concentrations. This activity is confirmed by single-channel experiments since well-defined ion channels were obtained if the lipid mixture was containing an anionic lipid (PS). The ion channel characteristics such as-no voltage dependence, only one unitary conductance, linear relation ship current-voltage-, are not in favour of the membrane permeabilisation according to the barrel model but rather by the toroidal pore formation.  相似文献   

18.
Compared to the N-formyl gramicidin A (GA), the N-acetyl gramicidin A (NAG) channel has unchanged conductance in 1 M NH4+ (gamma NN/gamma GG = 1, conductance ratio) but reduced conductance in 1 M K+ (gamma NN/gamma GG = 0.6) methylammonium (gamma NN/gamma GG = 0.3), and formamidinium (gamma NN/gamma GG = 0.1) solutions. Except with formamidinium, "flicker blocks" are evident even at low cutoff frequencies. For all cations studied, channel lifetimes of N-acetyl homodimers (NN) are approximately 50-fold shorter than those of the GA homodimer (GG). The novel properties of GA channels in formamidinium solution (supralinear current-voltage relations and dimer stabilization (Seoh and Busath, 1993)) also appear in NN channels. The average single channel lifetime in 1 M formamidinium solution at 100 mV is 6-7-fold longer than in K+ and methylammonium solutions and, like in the GA channel, significantly decreases with increasing membrane potential. Experiments with mixtures of the two peptides, GA and NAG, showed three main conductance peaks. Oriented hybrids were formed utilizing the principle that monomers remain in one leaflet of the bilayer (O'Connell et al., 1990). With GA at the polarized side and NAG at the grounded side, at positive potentials (in which case hybrids were designated GN) and at negative potentials (in which case hybrids were designated NG), channels had the same conductances and channel properties at all potentials studied. Flicker blocks were not evident in the hybrid channels, which suggests that both N-acetyl methyl groups at the junction of the dimer are required to cause flickers. Channel lifetimes in hybrids are only approximately threefold shorter than those of the GG channels, and channel conductances are similar to those of GG rather than NN channels. We suggest that acetyl-acetyl crowding at the dimeric junction in NN channels cause dimer destabilization, flickers, and increased selectivity in N-acetyl gramicidin channels.  相似文献   

19.
Membranes vesicles, prepared from bovine rod outer segments were fused with planar lipid bilayers. Two different ion channels were identified by recording currents from single channels. Both types of channels were selective for sodium rather than potassium and were impermeable to chloride ions. Unit conductances were 20 and 120 pS, respectively, in 150 mM sodium chloride. The channel with the larger unit conductance was sensitive to the transmembrane potential. This channel rapidly activated within less than 10 ms after a voltage jump to a more negative membrane potential and then inactivated after several seconds. The duration of the active period and the properties of the channel depended on the amplitude of the voltage jump. The channel of smaller unit conductance did not show any voltage-dependent activation or inactivation. Both types of channels were insensitive to light in the planar bilayer system. Channels incorporated into planar bilayers on a Teflon sandwich septum or on the tip of a glass micropipette gave similar results.  相似文献   

20.
The disruption of intracellular calcium homeostasis plays a central role in the pathology of Alzheimer's disease, which is also characterized by accumulation of the amyloid-beta peptides Abeta40 and Abeta42. These amphipathic peptides may become associated with neuronal membranes and affect their barrier function, resulting in the loss of calcium homeostasis. This suggestion has been extensively investigated by exposing protein-free model membranes, either vesicles or planar bilayers, to soluble Abeta. Primarily unstructured Abeta has been shown to undergo a membrane-induced conformational change to either primarily beta-structure or helical structure, depending, among other factors, on the model membrane composition. Association of Abeta renders lipid bilayers permeable to ions but there is dispute whether this is due to the formation of discrete transmembrane ion channels of Abeta peptides, or to a non-specific perturbation of bilayer integrity by lipid head group-associated Abeta. Here, we have attempted incorporation of Abeta in the hydrophobic core of zwitterionic bilayers, the most simple model membrane system, by preparing proteoliposomes by hydration of a mixed film of Abeta peptides and phosphatidylcholine (PC) lipids. Despite the use of a solvent mixture in which Abeta40 and Abeta42 are almost entirely helical, the Abeta analogs were beta-structured in the resulting vesicle dispersions. When Abeta40-containing vesicles were fused into a zwitterionic planar bilayer, the typical irregular "single channel-like" conductance of Abeta was observed. The maximum conductance increased with additional vesicle fusion, while still exhibiting single channel-like behavior. Supported bilayers formed from Abeta40/PC vesicles did not exhibit any channel-like topological features, but the bilayer destabilized in time. Abeta40 was present primarily as beta-sheets in supported multilayers formed from the same vesicles. The combined observations argue for a non-specific perturbation of zwitterionic bilayers by surface association of small amphipathic Abeta40 assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号