首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate dehydrogenase (GDH) is a mitochondrial enzyme linking the Krebs cycle to the multifunctional amino acid glutamate. Thereby, GDH plays a pivotal role between carbohydrate and protein metabolisms, controlling production and consumption of the messenger molecule glutamate in neuroendocrine cells. GDH activity is under the control of several regulators, conferring to this enzyme energy-sensor property. Indeed, GDH directly depends on the provision of the co-factor NADH/NAD+, rendering the enzyme sensitive to the redox status of the cell. Moreover, GDH is allosterically regulated by GTP and ADP. GDH is also regulated by ADP-ribosylation, mediated by a member of the energy-sensor family sirtuins, namely SIRT4. In the brain, GDH ensures the cycling of the neurotransmitter glutamate between neurons and astrocytes. GDH also controls ammonia metabolism and detoxification, mainly in the liver and kidney. In pancreatic β-cells, the importance of GDH as a key enzyme in the regulation of insulin secretion is now well established. Inhibition of GDH activity decreases insulin release, while activating mutations are associated with a hyperinsulinism syndrome. Although GDH enzyme catalyzes the same reaction in every tissue, its function regarding metabolic homeostasis varies greatly according to specific organs. In this review, we will discuss specificities of GDH regulation in neuroendocrine cells, in particular pancreatic islets and central nervous system.  相似文献   

2.
3.
Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism.  相似文献   

4.
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25?% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: l-Aspartate?+?GTP?+?H2O?→?Fumarate?+?GDP?+?Pi?+?NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research.  相似文献   

5.
The enzyme glutamate dehydrogenase (GDH) plays an important role in integrating mitochondrial metabolism of amino acids and ammonia. Glutamate may function as a respiratory substrate in the oxidative deamination direction of GDH, which also yields α-ketoglutarate. In the reductive amination direction GDH produces glutamate, which can then be used for other cellular needs such as amino acid synthesis via transamination. The production or removal of ammonia by GDH is also an important consequence of flux through this enzyme. However, the abundance and role of GDH in cellular metabolism varies by tissue. Here we discuss the different roles the house-keeping form of GDH has in major organs of the body and how GDH may be important to regulating aspects of intermediary metabolism. The near-equilibrium poise of GDH in liver and controversy over cofactor specificity and regulation is discussed, as well as, the role of GDH in regulation of renal ammoniagenesis, and the possible importance of GDH activity in the release of nitrogen carriers by the small intestine.  相似文献   

6.
Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5′-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5′-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.  相似文献   

7.
This mini-review summarizes studies my associates and I carried out that are relevant to the topic of the present volume [i.e. glutamate dehydrogenase (GDH)] using radioactive 13N (t1/2 9.96 min) as a biological tracer. These studies revealed the previously unrecognized rapidity with which nitrogen is exchanged among certain metabolites in vivo. For example, our work demonstrated that (a) the t1/2 for conversion of portal vein ammonia to urea in the rat liver is ∼10-11 s, despite the need for five enzyme-catalyzed steps and two mitochondrial transport steps, (b) the residence time for ammonia in the blood of anesthetized rats is ≤7-8 s, (c) the t1/2 for incorporation of blood-borne ammonia into glutamine in the normal rat brain is <3 s, and (d) equilibration between glutamate and aspartate nitrogen in rat liver is extremely rapid (seconds), a reflection of the fact that the components of the hepatic aspartate aminotransferase reaction are in thermodynamic equilibrium. Our work emphasizes the importance of the GDH reaction in rat liver as a conduit for dissimilating or assimilating ammonia as needed. In contrast, our work shows that the GDH reaction in rat brain appears to operate mostly in the direction of ammonia production (dissimilation). The importance of the GDH reaction as an endogenous source of ammonia in the brain and the relation of GDH to the brain glutamine cycle is discussed. Finally, our work integrates with the increasing use of positron emission tomography (PET) and nuclear magnetic resonance (NMR) to study brain ammonia uptake and brain glutamine, respectively, in normal individuals and in patients with liver disease or other diseases associated with hyperammonemia.  相似文献   

8.
9.
Thyroid hormones have long been known to play an essential role in brain growth and development, with cytoplasmic thyroid hormone binding proteins (THBPs) playing a critical role in thyroid hormone bioavailability. A major mammalian THBP is μ-crystallin (CRYM), which was originally characterized by its ability to strongly bind thyroid hormones in an NADPH-dependent fashion. However, in 2011 it was discovered that CRYM is also an enzyme, namely ketimine reductase (KR), which catalyzes the NAD(P)H-dependent reduction of –C=N– (imine) double bonds of a number of cyclic ketimine substrates including sulfur-containing cyclic ketimines. The enzyme activity was also shown to be potently inhibited by thyroid hormones, thus suggesting a novel reciprocal relationship between enzyme catalysis and thyroid hormone bioavailability. KR is involved in a number of amino acid metabolic pathways. However, the best documented biological function of KR is its role as a ?1-piperideine-2-carboxylate (P2C) reductase in the pipecolate pathway of lysine metabolism. The pipecolate pathway is the main l-lysine degradation pathway in the adult brain, whereas the saccharopine pathway predominates in extracerebral tissues and in infant brain, suggesting that KR has evolved to perform specific and important roles in neural development and function. The potent regulation of KR activity by thyroid hormones adds further weight to this suggestion. KR is also involved in l-ornithine/l-glutamate/l-proline metabolism as well as sulfur-containing amino acid metabolism. This review describes the pipecolate pathway and recent discoveries related to mammalian KR function, which have important implications in normal and pathological brain functions.  相似文献   

10.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

11.
This short review outlines the central role of glutamine synthetase (GS) in plant nitrogen metabolism and discusses some possibilities for crop improvement. GS functions as the major assimilatory enzyme for ammonia produced from N fixation, and nitrate or ammonia nutrition. It also reassimilates ammonia released as a result of photorespiration and the breakdown of proteins and nitrogen transport compounds. GS is distributed in different subcellular locations (chloroplast and cytoplasm) and in different tissues and organs. This distribution probably changes as a function of the development of the tissue, for example, GS1 appears to play a key role in leaf senescence. The enzyme is the product of multiple genes with complex promoters that ensure the expression of the genes in an organ- and tissue-specific manner and in response to a number of environmental variables affecting the nutritional status of the cell. GS activity is also regulated post-translationally in a manner that involves 14-3-3 proteins and phosphorylation. GS and plant nitrogen metabolism is best viewed as a complex matrix continually changing during the development cycle of plants. Along with GS, a number of other enzymes play key roles in maintaining the balance of carbon and nitrogen. It is proposed that one of these is glutamate dehydrogenase (GDH). There is considerable evidence for a GDH shunt to return the carbon in amino acids back into reactions of carbon metabolism and the tri-carboxylic acid cycle. Results with transgenic plants containing transferred GS genes suggest that there may be ways in which it is possible to improve the efficiency with which crop plants use nitrogen. Marker-assisted breeding may also bring about such improvements.  相似文献   

12.
Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of glutamine in the medium. We suggest that this extensive net-synthesis of aspartate due to lack of GDH activity is occurring via the concerted action of AAT and the part of TCA cycle operating from α-ketoglutarate to oxaloacetate, i.e. the truncated TCA cycle.  相似文献   

13.
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.  相似文献   

14.
Nitrogen fixation within legume nodules results from a complex metabolic exchange between bacteria of the family Rhizobiaciae and the plant host. Carbon is supplied to the differentiated bacterial cells, termed bacteroids, in the form of dicarboxylic acids to fuel nitrogen fixation. In exchange, fixed nitrogen is transferred to the plant. Both the bacteroid and the plant-derived peribacteroid membrane tightly regulate the exchange of metabolites. In the bacteroid oxidation of dicarboxylic acids via the TCA cycle occurs in an oxygenlimited environment. This restricts the TCA cycle at key points, such as the 2-oxoglutarate dehydrogenase complex, and requires that inputs of carbon and reductant are balanced with outputs from the TCA cycle. This may be achieved by metabolism through accessory pathways that can remove intermediates, reductant, or ATP from the cycle. These include synthesis of the carbon polymers PHB and glycogen and bypass pathways such as the recently identified 2-oxoglutarate decarboxylase reaction in soybean bacteroids. Recent labeling data have shown that bacteroids synthesize and secrete amino acids, which has led to controversy over the role of amino acids in nodule metabolism. Here we review bacteroid carbon metabolism in detail, evaluate the labeling studies that relate to amino acid metabolism by bacteroids, and place the work in context with the genome sequences of Mesorhizobium loti and Sinorhizobium meliloti. We also consider a wider range of metabolic pathways that are probably of great importance to rhizobia in the rhizosphere, during nodule initiation, infection thread development, and bacteroid development. Referee: Dr. Robert Ludwig, Department of Molecular, Celluar, and Developmental Biology, Sinheimer Laboratories, University of California, Santa Cruz, CA 95064  相似文献   

15.
There have been numerous studies on the activity and localization of aspartate aminotransferase (AAT) and glutamate dehydrogenase (GDH) in brain tissue. However, there is still a controversy as to the specific roles and relative importance of these enzymes in glutamate and glutamine metabolism in astrocytes and neurons or synaptic terminals. There are many reports documenting GDH activity in synaptic terminals, yet the misconception that it is a glial enzyme persists. Furthermore, there is evidence that this tightly regulated enzyme may have an increased role in synaptic metabolism in adverse conditions such as low glucose and hyperammonemia that could compromise synaptic function. In the present study, we report high activity of both AAT and GDH in mitochondrial subfractions from cortical synaptic terminals. The relative amount of GDH/AAT activity was higher in SM2 mitochondria, compared to SM1 mitochondria. Such a differential distribution of enzymes can contribute significantly to the compartmentation of metabolism. There is evidence that the metabolic capabilities of the SM1 and SM2 subfractions of synaptic mitochondria are compatible with the compartments A and B of neuronal metabolism proposed by Waagepetersen et al. (1998b. Dev. Neurosci. 20, 310-320).  相似文献   

16.
17.
Effects of repeated administration of benthiocarb on the nitrogen metabolism of hepatic and neuronal systems have been studied. Repeated benthiocarb treatment was associated with significant decrease in proteins with a concomitant increase in free amino acids (FAA) and specific activity levels of proteases suggesting impaired protein synthesis or elevated proteolysis. The glycogenic aminotransferases showed a significant elevation in both the tissues indicating high feeding of ketoacids into oxidative pathway for efficient operation of TCA cycle to combat energy crisis during induced benthiocarb stress. However, the activity levels of branched-chain aminotransferases decreased suggesting their reduced contribution of intermediates to TCA cycle. A comparative evaluation of the activity levels of ammonogenic enzymes, AMP deaminase, adenosine deaminase and glutamate dehydrogenase (GDH) indicated that ammonia was mostly contributed by nucleotide deamination rather than by oxidative deamination. GDH exhibited reduced activity due to low availability of glutamate. In accordance with increased levels of urea, the activity levels of arginase, a terminal enzyme of urea cycle was increased suggesting increased urea cycle operation in order to combat the increased ammonia content. As the presence of urea cycle in the brain is rather doubtful, the conversion of ammonia to glutamine for the synthesis of GABA is envisaged in brain whereas in liver, excess ammonia was converted to urea through ornithine-arginine reacting system. The increased glutaminase activity observed during benthiocarb intoxication is accounted for counteracting acidosis or maintenance of metabolic homeostasis. Arginase, a terminal enzyme of ornithine cycle showed increased activity denoting the efficient potentiality of tissues to avert ammonia toxicity. The changes observed in tissues of rat administered with benthiocarb reflects a shift in nitrogen metabolism for efficient mobilization of end products of protein catabolism.  相似文献   

18.
The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.  相似文献   

19.
本研究主要对克雷伯杆菌甘油转化1,3-丙二醇代谢途径中的2个关键酶甘油脱氢酶(GDH)、1,3-丙二醇氧化还原酶(PDOR)反应机制和动力学进行了研究。首先,通过初速度和产物抑制动力学研究确定了GDH、PDOR双底物酶促反应机制为有序BiBi机制,明确了由反应物消耗到产物生成之间的历程。其次,建立了GDH、PDOR双底物酶促反应动力学模型,由动力学模型可知,在偶合反应中,如果GDH和PDOR酶量相同,GDH氧化反应成为限速反应,而辅酶I将主要以氧化型NAD+形式存在。动力学信息为酶法合成1,3-丙二醇和代谢工程研究提供理论指导。  相似文献   

20.
植物氮代谢及其环境调节研究进展   总被引:42,自引:5,他引:37  
氮代谢是植物的基本生理过程之一,也是参与地球化学循环的重要组成部分,植物氮素同化的主要途径是经过硝酸盐还原为铵后直接参与氨基酸的合成与转化,期间硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酰胺合酶(GOGAT)、天冬酰胺转氨酶(AspAT)等关键酶参与了催化和调节,以氨基酸为主要底物在细胞中合成蛋白质,再经过对蛋白质的修饰、分类、转运及储存等,成为植物有机体的组成部分,同时与植物的碳代谢等协调统一,共同成为植物生命活动的基本过程,文中概述了植物氮素同化的途径、几种关键酶的特性和调控机制,简述了氮素代谢的信号传导、植物细胞蛋白质的形成、转运、储存和降解过程,基于水分胁迫等关键生态因子对氮代谢的影响及其调节机制的评述,强调了未来需加强研究的7个方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号