首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P?相似文献   

2.
3.
A novel two-step procedure to expand cardiac Sca-1+ cells clonally   总被引:1,自引:0,他引:1  
Resident cardiac stem cells (CSCs) are characterized by their capacity to self-renew in culture, and are multipotent for forming normal cell types in hearts. CSCs were originally isolated directly from enzymatically digested hearts using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface, and also compromise stem cell function. Alternatively resident CSCs can migrate from tissue explant and form cardiospheres in culture. However, fibroblast contamination can easily occur during CSC culture. To avoid these problems, we developed a two-step procedure by growing the cells before selecting the Sca-1+ cells and culturing in cardiac fibroblast conditioned medium, they avoid fibroblast overgrowth.  相似文献   

4.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P < 0.01) for hatched blastocysts (77.14%) than early/expanded blastocysts (54%) or morula (14%). When ICMs were isolated mechanically the primary colony formation for hatched blastocysts (90%) as well as blastocysts (66%) were significantly more than when ICMs were isolated by enzymatic digestion (60% and 30%, respectively). The colonies were disaggregated either mechanically or by enzymatic digestion for further subculture. When mechanical method was followed, the colonies remained undifferentiated up to 15 passages and three ES cell-like cell lines were produced (gES-1, gES-2, and gES-3). However, enzymatic disaggregation resulted in differentiation. The undifferentiated cells showed stem cell like morphological features, normal karyotype, and expressed stem cell specific surface markers like alkaline phosphatase, TRA-1-61, TRA-1-81, and intracellular markers Oct4, Sox2, and Nanog. Following prolonged culture of the ES cell-like cells were differentiated into several types of cells including neuron like and epithelium-like cells. In conclusion, goat embryonic stem cell-like cells can be isolated from in vitro produced goat embryos and can be maintained for long periods in culture.  相似文献   

5.
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine therapies,namely stem cells,have received significant attention in preclinical studies and clinical trials.Apart from their known potential for differentiation into the various body cells,stem cells enhance the organ's intrinsic regenerative capacity by altering its environment,whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration.Recently,research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells(CSCs/CPCs).The global burden of cardiovascular diseases’morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy.This review will discuss the nature of each of the CSCs/CPCs,their environment,their interplay with other cells,and their metabolism.In addition,important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells.Moreover,the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration.Finally,the novel role of nanotechnology in cardiac regeneration will be explored.  相似文献   

6.
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.  相似文献   

7.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.  相似文献   

8.
9.
Clusterin (CST) is a stress-responding protein with multiple biological functions, including the inhibition of apoptosis and inflammation and transport of lipids. It may also participate in cell traffic and migration. In the process of post-infarct cardiac tissue repair, stem cells migrate into the damaged myocardium under the influence of chemoattractive substances such as stromal cell-derived factor (SDF). This study aimed at testing whether CST enhances expression of stem cell homing receptor and migration of cardiac progenitor cells (CPCs). CPCs isolated from fetal canine hearts transduced by CST cDNA expressed high levels of CXCR4, a receptor for SDF-1. The transfected cells also showed an increased migratory response to SDF-1 stimulation. The SDF-1-mediated migration of the CST-expressing CPCs was attenuated by PI3 kinase inhibitor LY294002 but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Analysis of cell cycle by flow cytometry revealed no significant difference in cell cycle between the transduced and control CPCs. Thus, CST expression may increase CPCs migration via increasing CXCR4 expression and SDF-1/chemokine receptor signaling in a PI3/Akt-dependent manner.  相似文献   

10.

Rationale

Pluripotent stem cell–derived cardiac progenitor cells (CPCs) have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations.

Objective

Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells.

Method and Result

To test the hypothesis, we cocultured mouse embryonic stem (ES) cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1+ PDGFRa+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS) cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5+ and Isl1+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR+ PDGFRa+ CPCs from human ES cells.

Conclusions

Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.  相似文献   

11.
Cardiac progenitor cells are considered to be one of the most promising stem cells for heart regeneration and repair. The cardiac protective effect of CPCs is mainly achieved by reducing tissue damage and/or promoting tissue repair through a paracrine mechanism. Exosome is a factor that plays a major role in the paracrine effect of CPCs. By delivering microRNAs to target cells and regulating their functions, exosomes have shown significant beneficial effects in slowing down cardiac injury and promoting cardiac repair. Among them, miRNA‐210 is an important anoxic‐related miRNA derived from CPCs exosomes, which has great cardiac protective effect of inhibiting myocardial cell apoptosis, promoting angiogenesis and improving cardiac function. In addition, circulating miR‐210 may be a useful biomarker for the prediction or diagnosis of related cardiovascular diseases. In this review, we briefly reviewed the mechanism of miR‐210 derived from CPCs exosomes in cardiac protection in recent years.  相似文献   

12.

Background

At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.

Methodology/Principal Findings

CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP+ C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit+), endothelial cells (CD31+, CD34+), and mesenchymal cells (CD90+). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.

Conclusions/Significance

This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used.  相似文献   

13.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

14.
Irisin, a newly identified hormone and cardiokine, is critical for modulating body metabolism. New evidence indicates that irisin protects the heart against myocardial ischemic injury. However, whether irisin enhances cardiac progenitor cell (CPC)-induced cardiac repair remains unknown. This study examines the effect of irisin on CPC-induced cardiac repair when these cells are introduced into the infarcted myocardium. Nkx2.5+ CPC stable cells were isolated from mouse embryonic stem cells. Nkx2.5 + CPCs (0.5 × 10 6) were reintroduced into the infarcted myocardium using PEGlylated fibrin delivery. The mouse myocardial infarction model was created by permanent ligation of the left anterior descending (LAD) artery. Nkx2.5 + CPCs were pretreated with irisin at a concentration of 5 ng/ml in vitro for 24 hr before transplantation. Myocardial functions were evaluated by echocardiographic measurement. Eight weeks after engraftment, Nkx2.5 + CPCs improved ventricular function as evident by an increase in ejection fraction and fractional shortening. These findings are concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Transplantation of Nkx2.5 + CPCs promoted cardiac regeneration and neovascularization, which were increased with the pretreatment of Nkx2.5 + CPCs with irisin. Furthermore, irisin treatment promoted myocyte proliferation as indicated by proliferative markers Ki67 and phosphorylated histone 3 and decreased apoptosis. Additionally, irisin resulted in a marked reduction of histone deacetylase 4 and increased p38 acetylation in cultured CPCs. These results indicate that irisin promoted Nkx2.5 + CPC-induced cardiac regeneration and functional improvement and that irisin serves as a novel therapeutic approach for stem cells in cardiac repair.  相似文献   

15.
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.  相似文献   

16.
17.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are immature in their structure and function, limiting their potential in disease modeling, drug screening, and cardiac cellular therapies. Prior studies have demonstrated that coculture of hPSC‐derived CMs with other cardiac cell types, including endothelial cells (ECs), can accelerate CM maturation. To address whether the CM differentiation stage at which ECs are introduced affects CM maturation, the authors coculture hPSC‐derived ECs with hPSC‐derived cardiac progenitor cells (CPCs) and CMs and analyze the molecular and functional attributes of maturation. ECs have a more significant effect on acceleration of maturation when cocultured with CPCs than with CMs. EC coculture with CPCs increases CM size, expression of sarcomere, and ion channel genes and proteins, the presence of intracellular membranous extensions, and chronotropic response compared to monoculture. Maturation is accelerated with an increasing EC:CPC ratio. This study demonstrates that EC incorporation at the CPC stage of CM differentiation expedites CM maturation, leading to cells that may be better suited for in vitro and in vivo applications of hPSC‐derived CMs.  相似文献   

18.
19.
ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.  相似文献   

20.

Background

Cardiac progenitor cells (CPCs) have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+)CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF), are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α) could enhance the expression of c-kit. However, the mechanism is unknown.

Methods and Results

CPCs were isolated from adult mouse hearts, c-kit(+) and c-kit(−) CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+)CPCs, made c-kit(−)CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+) and c-kit(−) CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT) mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom''s MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+) and c-kit(−) CPCs.

Conclusions

SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+)CPCs and make c-kit(−)CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT activity, as well as the subsequent demethylation of the c-kit gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号