首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Drought stress in plants often leads to reduced productivity and limited geographic distribution, which can affect human life and ecosystems. The responses of diploid and tetraploid Paulownia tomentosa × Paulownia fortunei to drought have been reported, but the effects of drought stress on the levels of microRNA (miRNA) expression have not been published so far. Here, we constructed four small RNA (sRNA) libraries and four corresponding degradome libraries of well-watered and severe drought-treated diploid and tetraploid plants to identify the miRNAs and their putative target genes in Paulownia ‘yuza 1’, a P. tomentosa × P. fortunei hybrid clone, by sRNA and degradome sequencing. The putative target genes of miRNAs were annotated with gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Three conserved and 21 novel miRNAs responsive to drought stress were found, in which 15 were identified as the main drought responsive miRNAs that conferred higher resistance in tetraploid than in diploid of Paulownia ‘yuza 1’. Our results will lay the foundation for investigating the roles of miRNAs in Paulownia and other trees in response to drought.  相似文献   

4.
5.
Drought is a major abiotic stress affecting crop productivity and quality. As a class of noncoding RNA, microRNA (miRNA) plays important roles in plant growth, development, and stress response. However, their response and roles in tomato drought stress is largely unknown. Here, by using high-throughput sequencing, we compared the miRNA profiles before and after drought treatment in two tomato genotypes: M82, a drought-sensitive cultivated tomato (Solanum lycopersicum), and IL2-5, a drought-tolerant introgression line derived from M82 and the tomato wild species S. pennellii (LA0716). A total of 108 conserved and 208 novel miRNAs were identified, among them, 32 and 68 were significantly changed in expression after stress. Further, 1936 putative target genes were predicted for those differentially-expressed miRNAs. Gene ontology and pathway analysis showed that many of the target genes were involved in stress resistance, such as genes in GO terms including response to stress, defense response, response to stimulus, phosphorylation, and signal transduction. Our results suggested that miRNAs play an essential role in the drought response of tomato. This work will help to further characterize specific miRNAs functioning in drought tolerance.  相似文献   

6.
MiR408 is a conserved miRNA family in plants. Although AtmiR408 is generally regarded as participating in stress responses, it still remains obscure whether OsmiR408 modulates tolerance to environmental stress. In the current study, expression of Pre-OsmiR408 and OsmiR408 was found to be induced by cold stress, but repressed by drought stress in the rice cultivar “Kongyu 131”. By comparing the wild type and OsmiR408 transgenic lines, we found that OsmiR408 overexpression conferred enhanced cold tolerance at both the early seedling stage and the young seedling stage. On the other hand, the OsmiR408 transgenic lines exhibited decreased drought tolerance, which is further verified by greater water loss. We also predicted the putative target genes of OsmiR408 and verified the decreased expression of seven targets in OsmiR408 transgenic lines, including four phytocyanins and three atypical target genes. Among them, Os09g29390, a phytocyanin gene, and Os01g53880, an auxin responsive Aux/IAA gene, were down-regulated by cold treatment, which is opposite to the cold-induced expression of OsmiR408. Taken together, our results suggest opposite roles of OsmiR408 in plant responses to cold and drought stresses.  相似文献   

7.
8.
9.
10.
Here, we performed comparative miRNA profiling in wild type and early flowering transgenic Chrysanthemum morifolium with constitutive expression of APETALA1 (AP1)-like gene, HAM92 (Helianthus annuus). Six sRNA libraries constructed from leaves and shoot apexes after the short day photoperiod initiation, as well as from opened inflorescence after anthesis were sequenced and analyzed. A total of 324 members (163 families) of putative conserved miRNAs and 30 candidate novel miRNAs specific for C. morifolium (cmo-miRNAs) were identified. Bioinformatic analysis revealed 427 and 138 potential mRNA targets for conserved and novel cmo-miRNAs, respectively. These genes were described in Gene Ontology terms and found to be implicated in a broad range of signaling pathways. Plant- and tissue-specific expression of 9 highly conserved cmo-miRNAs was compared between wild type and transgenic chrysanthemum lines with ectopic expression of AP1-like genes HAM92 and CDM111 (C. morifolium), using RT-qPCR and cmo-miR162a as a reference miRNA. The results of our study provide a framework for further investigation of miRNA evolution and functions in higher plants, as well as their roles in flowering control.  相似文献   

11.
12.
13.
14.
Nitrogen is an essential macronutrient for plant growth and reproduction. In durum wheat, an appropriate nitrogen soil availability is essential for an optimal seed development. miRNAs contribute to the environmental change adaptation of plants through the regulation of important genes involved in stress processes. In this work, nitrogen stress response was evaluated in durum wheat seedlings of Ciccio and Svevo cultivars. Eight small RNA libraries from leaves and roots of chronically stressed plants were sequenced to detect conserved and novel miRNAs. A total of 294 miRNAs were identified, 7 of which were described here for the first time. The expression level of selected miRNAs and target genes was analyzed by qPCR in seedlings subjected to chronic (Ciccio and Svevo, leaves and roots) or short-term (Svevo roots) stress conditions. Some miRNAs showed an immediate stress response, and their level of expression was either maintained or returned to a basal level during a long-term stress. Other miRNAs showed a gradual up- or downregulation during the short-term stress. The newly identified miRNA ttu-novel-106 showed an immediate strongly downregulation after nitrogen stress, which was negatively correlated with the expression of MYB-A, its putative target gene. PHO2 gene was significantly upregulated after 24–48-h stress, corresponding to a downregulation of miR399b. Ttu-miR399b putative binding sites in the 5′ UTR region of the Svevo PHO2 gene were identified in the A and B genomes. Both MYB-A and PHO2 genes were validated for their cleavage site using 5′ RACE assay.  相似文献   

15.
16.
17.
18.
Economically feasible systems for heterologous production of complex secondary metabolites originating from difficult to cultivate species are in demand since Escherichia coli and Saccharomyces cerevisiae are not always suitable for expression of plant and animal genes. An emerging oilseed crop, Camelina sativa, has recently been engineered to produce novel oil profiles, jet fuel precursors, and small molecules of industrial interest. To establish C. sativa as a system for the production of medicinally relevant compounds, we introduced four genes from Veratrum californicum involved in steroid alkaloid biosynthesis. Together, these four genes produce verazine, the hypothesized precursor to cyclopamine, a medicinally relevant steroid alkaloid whose analogs are currently being tested for cancer therapy in clinical trials. The future supply of this potential cancer treatment is uncertain as V. californicum is slow-growing and not amendable to cultivation. Moreover, the complex stereochemistry of cyclopamine results in low-yield syntheses. Herein, we successfully engineered C. sativa to synthesize verazine, as well as other V. californicum secondary metabolites, in seed. In addition, we have clarified the stereochemistry of verazine and related V. californicum metabolites.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号