首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes (Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia’s Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables.  相似文献   

2.
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species'' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species'' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations.  相似文献   

3.
Duration of the pelagic phase of benthic marine fishes has been related to dispersal distance, with longer pelagic larval duration (PLD) expected to result in greater dispersal potential. Here, we examine PLDs of 2 species of coral-reef butterflyfish (Chaetodon auriga and C. flavirostris) across latitudes (14°S–37°S) along the Great Barrier Reef into south-eastern Australia; we predict that PLD will be higher for fish collected below the breeding latitudes of 24°S. For C. auriga, apart from significantly longer PLDs at Lord Howe Island and Jervis Bay (means of 54 and 52 days, respectively), all locations had similar PLDs (mean 41 days). For C. flavirostris, there was no significant location effect on PLD (mean 41.5 days); however, PLD at Lord Howe Island was 58 days with high variance precluding significance. Also, there was no significant variation in PLD among years for either species despite considerable variation in East Australian Current strength.  相似文献   

4.
The processes underlying the distributional limits of both corals and coral reefs can be elucidated by examining coral communities at high latitudes. Coral-dominated communities in eastern Australia cover a latitudinal range of >2,500 km, from the northern Great Barrier Reef (11°S) to South West Rocks (31.5°S). Patterns of coral species richness from 11 locations showed a clear separation between the Great Barrier Reef and subtropical sites, with a further abrupt change at around 31°S. Differences in community structure between the Great Barrier Reef and more southern sites were mainly attributable to higher cover of massive corals, branching Acropora, dead coral and coralline algae on the Great Barrier Reef, and higher cover of macroalgae and bare rock at more southern sites. The absence of some major reef-building taxa (i.e., staghorn Acropora and massive Porites) from most subtropical sites coincided with the loss of reef accretion capacity. Despite high cover of hard corals in communities at up to 31°S, only Lord Howe Island contained areas of reef accretion south of the Great Barrier Reef. Factors that have been hypothesized to account for latitudinal changes in coral community structure include water temperature, aragonite saturation, light availability, currents and larval dispersal, competition between corals and other biota including macroalgae, reduced coral growth rates, and failure of coral reproduction or recruitment. These factors do not operate independently of each other, and they interact in complex ways.  相似文献   

5.
Endemic species are assumed to have a high risk of extinction because their restricted geographic range is often associated with low abundance and high ecological specialization. This study examines the abundance of Chaetodon butterflyfishes at Lord Howe Island in the south‐west Pacific, and compares interspecific differences in local abundance to the feeding behavior and geographic range of these species. Contrary to expected correlations between abundance and geographic range, the single most abundant species of butterflyfish was Chaetodon tricinctus, which is endemic to Lord Howe Island and adjacent reefs; densities of C. tricinctus (14.1 ± 2.1 SE fish per 200m2) were >3 times higher than the next most abundant butterflyfish (Chaetodon melannotus), and even more abundant than many other geographically widespread species. Dietary breadth for the five dominant butterflyfishes at Lord Howe Island was weakly and generally negative correlated with abundance. The endemic C. tricinctus was a distinct outlier in this relationship, though our extensive feeding observations suggest some issues with the measurements of dietary breadth for this species. Field observations revealed that all bites taken on benthic substrates by C. tricinctus were from scleractinian corals, but adults rarely, if ever, took bites from the benthos, suggesting that they may be feeding nocturnally and/or using mid‐water prey, such as plankton. Alternatively, the energetic demands of C. tricinctus may be fundamentally different to other coral‐feeding butterflyfishes. Neither dietary specialization nor geographic range accounts for interspecific variation in abundance of coral reef butterflyfishes at Lord Howe Island, while much more work on the foraging behavior and population dynamics of C. tricinctus will be required to understand its’ abundance at this location.  相似文献   

6.
Coral growth in subtropical eastern Australia   总被引:7,自引:0,他引:7  
 Extension rates of corals at two sites in subtropical eastern Australia (Solitary Islands and Lord Howe Island) were measured to determine whether growth was low relative to tropical locations. Growth was measured using alizarin staining of skeletons and X-radiographic analysis, and was compared between colonies, species, and sites. Linear extension of individual Pocillopora damicornis colonies averaged 12.4 to 16.1 mm per year at Solitary Islands and Lord Howe Island respectively, which is 50% to 80% of published values for this species at tropical sites. Similarly, average extension of most massive faviid species examined at these sites was between 2.6 mm and 4.6 mm per year, considerably lower than most values reported from lower latitudes (generally 6 mm to 10 mm per year). However, growth rates of Acropora yongei, Turbinaria frondens, and Porites heronensis were close to those of closely-related taxa from the tropics. Causal links between latitude, growth rates of coral colonies, and the potential for reef accretion remain unclear. Accepted: 22 April 1999  相似文献   

7.
The density of recruits of scleractinian corals on settlement plates at Lord Howe Island, a small isolated sub-tropical island 630 km off the Australian coastline, was within the range of values reported for comparable studies on the Great Barrier Reef. However, there was a difference in the relative abundance of taxonomic groups, with recruitment at Lord Howe Island during the summer of 1990/91 dominated by corals from the Family Pocilloporidae, Family Poritidae, and sub-genus Acropora (Isopora) (in order of abundance). By contrast, on the Great Barrier Reef, recruits are generally predominantly species from the Family Acroporidae (other than the Acropora (Isopora) group). Both the recruits and the established coral communities at Lord Howe Island are dominanted by corals which release brooded planulae, as opposed to the pattern of mass-spawning with external fertilisation more typical of Great Barrier Reef corals. I hypothesise that the release of brooded planulae would be advantageous in an isolated reef community because (a) brooded larvae can travel large distances and survive the journey to the isolated reef and/or (b) brooded larvae have a shorter period before they are competent to settle and are therefore more likely to be retained on the parental reef once a population has been established.  相似文献   

8.
Cold-water corals (CWCs) are key ecosystem engineers in deep-sea benthic communities around the world. Their distribution patterns are related to several abiotic and biotic factors, of which seawater temperature is arguably one of the most important due to its role in coral physiological processes. The CWC Dendrophyllia cornigera has the particular ability to thrive in several locations in which temperatures range from 11 to 17 °C, but to be apparently absent from most CWC reefs at temperatures constantly below 11 °C. This study thus aimed to assess the thermal tolerance of this CWC species, collected in the Mediterranean Sea at 12 °C, and grown at the three relevant temperatures of 8, 12, and 16 °C. This species displayed thermal tolerance to the large range of seawater temperatures investigated, but growth, calcification, respiration, and total organic carbon (TOC) fluxes severely decreased at 8 °C compared to the in situ temperature of 12 °C. Conversely, no significant differences in calcification, respiration, and TOC fluxes were observed between corals maintained at 12 and 16 °C, suggesting that the fitness of this CWC is higher in temperate rather than cold environments. The capacity to maintain physiological functions between 12 and 16 °C allows D. cornigera to be the most abundant CWC species in deep-sea ecosystems where temperatures are too warm for other CWC species (e.g., Canary Islands). This study also shows that not all CWC species occurring in the Mediterranean Sea (at deep-water temperatures of 12–14 °C) are currently living at their upper thermal tolerance limit.  相似文献   

9.
 Experimental studies of the upper thermal limits of corals from Orpheus Island, an inshore reef in the central Great Barrier Reef, show that Acropora formosa has a 5-day 50%-bleaching threshold of between 31 and 32 °C in summer, only 2 to 3 °C higher than local mean summer temperatures (29 °C). Summer bleaching thresholds for Pocillopora damicornis and A. elseyi were 1 °C higher (between 32 and 33 °C). The winter bleaching threshold of Pocillopora damicornis was 1 °C lower than its summer threshold, indicating that seasonal acclimatisation may take place. This seasonal difference raises the possibility that at least some corals may be capable of short-term thermal acclimatisation. Neither P. damicornis nor A. elseyi showed habitat-specific (reef flat versus reef slope) differences in bleaching thresholds. Further, colonies of P. damicornis collected from sites 3 km apart also showed no difference in bleaching threshold despite populations of this species responding differently at these two sites during a natural bleaching event. The bleaching thresholds determined in this study are best considered as the maximum tolerable temperatures for local populations of these species because they were determined in the absence of additional stressors (e.g. high light) which often co-occur during natural bleaching events. We consider the 5-day 50% bleaching thresholds determined in these experiments to be fair indicators of upper thermal limits, because >50% of a sample population died when allowed to recover in situ. We found a delay of up to a month in the bleaching response of corals following thermal stress, a result that has implications for identifying the timing of stressful conditions in natural bleaching events. Accepted: 26 May 1999  相似文献   

10.
The Lord Howe Island stick insect (Dryococelus australis) is one of the world’s rarest insects. However, the opportunity to reintroduce the species to Lord Howe Island, and commence the path to recovery, may occur within the next 5 years. Understanding the insect’s host plant and habitat preferences on Lord Howe Island is critical to maximising the likelihood of reintroduction success. However, very little ecological information was documented before the species became extinct on the island in the 1930s. Here we examine the Lord Howe Island stick insect’s preference for potential host plants, a key aspect of habitat suitability. We conducted preference trials using 15 common plant species found on Lord Howe Island. Both nymphs and adults consumed some but not all of these plant species. Nymphs were able to survive on 7 of these 15 plants for the duration of the 26-day trials although failed to survive on some of the plants most preferred by adults. Overall, these data reveal that there are numerous plants on Lord Howe Island that the stick insect can consume, though their suitability varies with different developmental stages of the insect. These data are encouraging for any future reintroduction attempts and would greatly aid the selection and monitoring of release sites.  相似文献   

11.
Knowledge of the dispersal capacity of species is crucial to assess their extinction risk, and to establish appropriate monitoring and management strategies. The Providence petrel (Pterodroma solandri) presently breeds only at Lord Howe Island (~32,000 breeding pairs) and Phillip Island-7 km south of Norfolk Island (~20 breeding pairs). A much larger colony previously existed on Norfolk Island (~1,000,000 breeding pairs) but was hunted to extinction in the 18th Century. Differences in time of return to nesting sites are presently observed between the two extant colonies. Information on whether the Phillip Island colony is a relict population from Norfolk Island, or a recent colonization from Lord Howe Island, is essential to assess long-term sustainability and conservation significance of this small colony. Here, we sequenced the mitochondrial cytochrome b gene and 14 nuclear introns, in addition to genotyping 10 microsatellite loci, to investigate connectivity of the two extant P. solandri populations. High gene flow between populations and recent colonization of Phillip Island (95 % HPD 56–200 ya) are inferred, which may delay or prevent the genetic differentiation of these insular populations. These results suggest high plasticity in behaviour in this species and imply limited genetic risks surrounding both the sustainability of the small Phillip Island colony, and a proposal for translocation of Lord Howe Island individuals to re-establish a colony on Norfolk Island.  相似文献   

12.

Reef-forming corals are under threat globally from climate change, leading to changes in sea temperatures with both hot and cold events recorded and projected to increase in frequency and severity in the future. Tolerance to heat and cold exposure has been found to be mutually exclusive in other marine invertebrates, but it is currently unclear whether a trade-off exists between hot and cold thermal tolerance in tropical corals. This study quantified the changes in physiology in Acropora millepora from the central Great Barrier Reef subjected to three temperature treatments; sub-lethal cold, ambient and sub-lethal heat (23.0 °C, 27.0 °C and 29.5 °C, respectively). After 10 weeks, pigment content and Symbiodiniaceae density increased in cold-treated corals but decreased in heat-treated corals relative to corals at ambient conditions. Heat-treated corals gained less mass relative to both ambient and cold-treated corals. These results indicate that the physiological condition of A. millepora corals examined here improved in response to mild cold exposure compared to ambient exposure and decreased under mild heat exposure despite both these temperatures occurring in situ around 15% of the year. The energetic condition of corals in the hotter treatment was reduced compared to both ambient and cooler groups, indicating that corals may be more resilient to mild cold exposure relative to mild heat exposure. The results indicate that the corals shifted their resource allocation in response to temperature treatment, investing more energy into skeletal extension rather than maintenance. No evidence of thermal tolerance trade-offs was found, and cold thermal tolerance was not lost in more heat-tolerant individuals. An enhanced understanding of physiological responses of corals at both ends of the thermal spectrum is important for predicting the resilience of corals under projected climate change conditions.

  相似文献   

13.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

14.
The upper thermal limits of two cold-water stenotherms: the mayfly, Lestagella penicillata (Teloganodidae), and the stonefly, Aphanicerca capensis (Notonemouridae), were determined from six rivers in the Western Cape, South Africa. Limits were estimated using the Critical Thermal Method (expressed as Critical Thermal maximum) and the Incipient Lethal Temperature method (expressed as Incipient Lethal Upper Limit). Hourly water temperatures recorded in these rivers were used to characterise thermal signatures. Median CTmax and 96 h ILUT varied significantly amongst rivers for both species (≤5.7°C for CTmax and ≤4.0°C for 96 h ILUT) and variation was similar for both species. Differences in water temperature amongst rivers during the experimental period (spring) were insufficient (<2.0°C) to confirm the relationship between upper thermal limits and thermal history, expressed as an averaging statistic derived from in situ water temperatures. Greatest thermal range was over the warm summer period (>8.0°C) and it is likely that this is when thermal history may influence thermal limits. Maximum Weekly Allowable Temperature thresholds averaged for all rivers were lower for A. capensis (17.0°C) compared to L. penicillata (19.0°C). Both species have life cycles that allow them to avoid the thermally stressful summer period.  相似文献   

15.
Corals at the world's southernmost coral reef of Lord Howe Island (LHI) experience large temperature and light fluctuations and need to deal with periods of cold temperature (<18°C), but few studies have investigated how corals are able to cope with these conditions. Our study characterized the response of key photophysiological parameters, as well as photoacclimatory and photoprotective pigments (chlorophylls, xanthophylls, and β‐carotene), to short‐term (5‐d) cold stress (~15°C; 7°C below control) in three LHI coral species hosting distinct Symbiodinium ITS2 types, and compared the coral–symbiont response to that under elevated temperature (~29°C; 7°C above control). Under cold stress, Stylophora sp. hosting Symbiodinium C118 showed the strongest effects with regard to losses of photochemical performance and symbionts. Pocillopora damicornis hosting Symbiodinium C100/C118 showed less severe bleaching responses to reduced temperature than to elevated temperature, while Porites heronensis hosting Symbiodinium C111* withstood both reduced and elevated temperature. Under cold stress, photoprotection in the form of xanthophyll de‐epoxidation increased in unbleached P. heronensis (by 178%) and bleached Stylophora sp. (by 225%), while under heat stress this parameter increased in unbleached P. heronensis (by 182%) and in bleached P. damicornis (by 286%). The xanthophyll pool size was stable in all species at all temperatures. Our comparative study demonstrates high variability in the bleaching vulnerability of these coral species to low and high thermal extremes and shows that this variability is not solely determined by the ability to activate xanthophyll de‐epoxidation.  相似文献   

16.
Changing oceanic conditions, particularly ocean warming and altered currents, can affect the reproductive success of corals. Improving the knowledge of coral reproductive processes at the marginal range limits of coral reefs is important for understanding the ecology of subtropical coral communities and the potential for coral species to expand their ranges in higher latitudes in the future. The extent of live coral cover around subtropical Lord Howe Island (LHI; 31°33′S, 159°05′E) approximately 600 km off the east coast of Australia, has been relatively stable over the last several decades; however, shifts in dominant species in the adult coral community have been reported. To examine the potential influences of recent altered currents and shifts in dominant scleractinian taxa within this community, this study examined spatial and seasonal variation of coral larval settlement at different habitats within the LHI reef lagoon. The study also assessed whether the assemblage of scleractinian corals settling at LHI has changed between 1990–1991 and 2011–2012. Mean densities of coral settlement in 2011–2012 (230 spat m?2 yr?1) were consistent with those reported in 1990–1991 and in other regions. However, changes in taxonomic composition were apparent with increases in the proportion of Acroporidae spat at some sites. Settlement of all taxa was highest over summer months, whereas during winter only one coral spat (Pocilloporidae) was detected. Coral settlement was highest and most taxonomically diverse at sites closest to the reef crest, where mortality of settled spat was also greatest. Rates of settlement were high compared with juvenile densities; hence, post-settlement mortality is also likely to be high. Post-settlement processes, influenced by local environmental conditions, are likely to be very important in structuring the adult coral communities within the LHI reef lagoon.  相似文献   

17.
In reef corals, much research has focused on the capacity of corals to acclimatize and/or adapt to different thermal environments, but the majority of work has focused on distinctions in mean temperature. Across small spatial scales, distinctions in daily temperature variation are common, but the role of such environmental variation in setting coral thermal tolerances has received little attention. Here, we take advantage of back-reef pools in American Samoa that differ in thermal variation to investigate the effects of thermally fluctuating environments on coral thermal tolerance. We experimentally heat-stressed Acropora hyacinthus from a thermally moderate lagoon pool (temp range 26.5–33.3°C) and from a more thermally variable pool that naturally experiences 2–3 h high temperature events during summer low tides (temp range 25.0–35°C). We compared mortality and photosystem II photochemical efficiency of colony fragments exposed to ambient temperatures (median: 28.0°C) or elevated temperatures (median: 31.5°C). In the heated treatment, moderate pool corals showed nearly 50% mortality whether they hosted heat-sensitive (49.2 ± 6.5% SE; C2) or heat-resistant (47.0 ± 11.2% SE; D) symbionts. However, variable pool corals, all of which hosted heat-resistant symbionts, survived well, showing low mortalities (16.6 ± 8.8% SE) statistically indistinguishable from controls held at ambient temperatures (5.1–8.3 ± 3.3–8.3% SE). Similarly, moderate pool corals hosting heat-sensitive algae showed rapid rates of decline in algal photosystem II photochemical efficiency in the elevated temperature treatment (slope = −0.04 day−1 ± 0.007 SE); moderate pool corals hosting heat-resistant algae showed intermediate levels of decline (slope = −0.039 day−1 ± 0.007 SE); and variable pool corals hosting heat-resistant algae showed the least decline (slope = −0.028 day−1 ± 0.004 SE). High gene flow among pools suggests that these differences probably reflect coral acclimatization not local genetic adaptation. Our results suggest that previous exposure to an environmentally variable microhabitat adds substantially to coral–algal thermal tolerance, beyond that provided by heat-resistant symbionts alone.  相似文献   

18.
To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.  相似文献   

19.
The population of flesh-footed shearwaters (Puffinus carneipes) breeding on Lord Howe Island was shown to be declining from the 1970''s to the early 2000''s. This was attributed to destruction of breeding habitat and fisheries mortality in the Australian Eastern Tuna and Billfish Fishery. Recent evidence suggests these impacts have ceased; presumably leading to population recovery. We used Bayesian statistical methods to combine data from the literature with more recent, but incomplete, field data to estimate population parameters and trends. This approach easily accounts for sources of variation and uncertainty while formally incorporating data and variation from different sources into the estimate. There is a 70% probability that the flesh-footed shearwater population on Lord Howe continued to decline during 2003–2009, and a number of possible reasons for this are suggested. During the breeding season, road-based mortality of adults on Lord Howe Island is likely to result in reduced adult survival and there is evidence that breeding success is negatively impacted by marine debris. Interactions with fisheries on flesh-footed shearwater winter grounds should be further investigated.  相似文献   

20.
Forty-nine species and one variety of benthic blue-green, red, brown and green algae were found over a 1.5 year period in a thermal sea water dump where temperatures average 10°C above ambient Long Island Sound waters. Of these, 58% can survive temperatures exceeding 30°C, but only six show survival after prolonged excessive temperature. At temperatures less than 27°C, the number of taxa is independent of temperature, but at greater temperatures there is a significant negative correlation of temperature to taxa count, reaching a minimum of 3 species. Rapid temperature drops cause concomitant drops in taxa counts, 14% of this variation being attributed to drastic temperature change which affects the algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号