首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatoprotective agents could prevent tissue damage and reduce morbidity and mortality rates; such agents may include folkloric or alternative treatments. The present study evaluated the protective effects of the flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. (SGF) on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Sprague-Dawley male rats were orally treated with SGF daily and received CCl4 intraperitoneally twice a week for 4 weeks. Our results showed that SGF at doses of 100, 300 and 500 mg/kg significantly reduced the elevated activities of serum aminotransferases (ALT and AST), alkaline phosphatase and lactate dehydrogenase and the level of hepatic thiobarbituric acid–reactive substances compared to the CCl4-treated group. Moreover, SGF treatment was also found to significantly increase the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glutathione compared with CCl4-induced intoxicated liver. Histopathologic examination revealed that CCl4-induced hepatic damage was markedly reversed by SGF. The results suggest that SGF has hepatoprotective and antioxidant properties in CCl4-induced liver injury in rats.  相似文献   

2.
Aged garlic extract (AGE) possesses multiple biological activities. We evaluated the protective effect of S-allyl cysteine (SAC), one of the organosulfur compounds of AGE, against carbon tetrachloride (CCl4)-induced acute liver injury in rats. SAC was administrated intraperitoneally (50–200 mg/kg). SAC significantly suppressed the increases of plasma ALT and LDH levels. SAC also attenuated histological liver damage. CCl4 administration induced lipid peroxidation accompanied by increases in the plasma malondialdehyde and hepatic 4-hydroxy-2-nonenal levels, and SAC dose-dependently attenuated these increases. The hepatic total level of hydroxyoctadecadienoic acid (HODE), a new oxidative stress biomarker, was closely correlated with the amount of liver damage. These results suggest that SAC decreased CCl4-induced liver injury by attenuation of oxidative stress, and may be a better therapeutic tool for chronic liver disease.  相似文献   

3.
The role of polyamines in carbon tetrachloride (CCl4)-induced organ injury was studied in syngenic rats and transgenic rats with activated polyamine catabolism. In syngenic rats, administration of CCl4 resulted in the induction of hepatic spermidine/spermine N 1-acetyltransferase (SSAT), accumulation of putrescine, reduction in spermine level and appearance of moderate hepatic injury within 24 h. Upon treatment with CCl4, transgenic rats overexpressing SSAT displayed induction of both hepatic and pancreatic SSAT, with subsequent accumulation of putrescine and decrease of both spermidine and spermine pools. Administration of CCl4 in SSAT transgenic rats induced not only massive hepatic injury, but also severe acute necrotizing pancreatitis. Pretreatment of the animals with catabolically stable functional polyamine mimetic, α-methylspermidine (MeSpd) prevented pancreatic and hepatic injury in SSAT rats and markedly reduced liver damage in syngenic animals. As assessed by immunostaining of proliferating cell nuclear antigen, MeSpd increased the amount of regenerating hepatocytes in both genotypes. These results show that CCl4 induces hepatic and pancreatic polyamine catabolism, and the extent of organ damage correlates with the degree of polyamine depletion. Furthermore, MeSpd protects against CCl4-induced hepatic and pancreatic damage and promotes tissue regeneration.  相似文献   

4.
This study elucidated the effects of cornuside on carbon tetrachloride (CCl4)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl4. Sixteen h after CCl4 treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl4-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl4 treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl4-treated rats. Our data indicate that cornuside protects the liver from CCl4-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

5.
The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.  相似文献   

6.
7.
The study was evaluated to investigate the efficacy of selenocystine (CysSeSeCys), a well-known organoselenium compound, on the prevention of carbon tetrachloride (CCl4)-induced acute hepatic injury in Wistar rats. Forty healthy male Wistar rats were utilized in this study. Acute hepatotoxicity was induced by CCl4 intoxication in rats. Serum biological analysis, oxidative stress, immune parameters, and gene expression of COX-2 and CYP2E1 were carried out. Pretreatment of CysSeSeCys prior to CCl4 administration significantly prevented an increase in serum hepatic enzymatic activities. In addition, pretreatment of CysSeSeCys significantly prevented the formation of ROS, MDA, depletion of glutathione, and alteration of antioxidant enzyme activities in the liver of CCl4-intoxicated rats. This study also revealed that pretreatment with CysSeSeCys normalized the levels of interleukin 6 and10, IgG, and CD4 cell count. Pretreatment of CysSeSeCys significantly reversed COX-2 inflammatory response and the upregulation of CYP2E1 expression as well. Histopathological changes induced by CCl4 were also significantly attenuated by CysSeSeCys pretreatment. CysSeSeCys has a potent hepatoprotective effect on CCl4-induced liver injury in rats through its antioxidative, immunomodulatory and anti-inflammatory activity.  相似文献   

8.
The inflammatory response plays an important role in carbon tetrachloride (CCl4)-induced acute liver injury and methane has been shown to exert beneficial effects on inflammation-associated diseases. Thus, we investigated the potential protective effects of methane-rich saline (MS) on CCl4-induced acute liver injury and explored the underlying mechanism. A CCl4-induced acute liver injury model was established by injection of CCl4 (0.6 ml/kg, ip) in mice followed by treatment with MS (16 ml/kg, ip), 24 h later. All groups of mice were sacrificed and blood and liver tissues were collected. Serum aminotransferase, necrotic areas, and inflammatory cell infiltration in liver slices were enhanced after CCl4 treatment but decreased with MS treatment. IL-6, TNF-α, IL-1β, IFN-γ, ICAM-1, CXCL1, MPO, NF-κB p65, ERK, JNK, and MAPK P38, expression in serum or liver homogenate were greater after CCl4 treatment but comparatively less after MS treatment. Only IL-10 increased after MS treatment. Anti-IL10 blockade (1.5 mg/kg) restored MS-mediated attenuated phosphorylation of NF-?bB/MAPK and the protective effect of MS was abolished for all indices examined. The PI3K inhibitor, wortmannin had the same effects on MS as anti-IL-10 antibody. MS also induced phosphorylation of GSK-3β and AKT in CCl4-treated mice. After pre-treatment with wortmannin (0.7 mg/kg), phosphorylation of GSK-3β and AKT proteins were reduced compared to its solvent control group-DMSO-treated animals. Thus, the data provide evidence that MS may activate the PI3K–AKT–GSK-3β pathway to induce IL-10 expression and produce anti-inflammatory effects via the NF-κB and MAPK pathways. The findings provide a new pharmacological strategy for management of inflammatory response after acute liver injury.  相似文献   

9.
Summary.  The results regarding taurine pretreatment on CCl4-induced hepatic injury are controversial. To assess the therapeutic efficacy of taurine on rat liver injury, hepatic malondialdehyde, glutathione, and hydroxyproline levels together with morphologic alterations in the liver following CCl4 administration were investigated. The rats were divided into three groups. Taurine-treated animals received 15 ml/kg/day of a 5% taurine solution by a gastric tube for 5 days before administering CCl4 (2 ml/kg, intraperitoneally, in a single dose). CCl4-treated rats received the same amount of saline solution. Control animals received no treatment. The increase of hepatic malondialdehyde formation in the CCl4-treated group was partially prevented by taurine pretreatment, but taurine had no significant effect on the glutathione and hydroxyproline content in the CCl4-treated rats. Taurine pretreatment induced a marked beneficial effect regarding the prevention of hepatocellular necrosis and atrophy as demonstrated morphologically. In conclusion, these results suggest that taurine pretreatment might not significantly change the biochemical parameters, but prevents the morphologic damage caused by CCl4 in the early stages. Received March 17, 2001 Accepted July 18, 2001  相似文献   

10.
Gut dysbiosis contributes to hepatic fibrosis. Emerging evidence revealed the major role of traditional Chinese medicine (TCM) in gut microbiota homeostasis. Here, we aimed to investigate the anti-fibrotic activity and underlying mechanism of ganshuang granules (GS), particularly regarding gut microbiota homeostasis. CCl4-induced hepatic fibrosis models were allocated into 4 groups receiving normal saline (model), 1.0, 2.0, or 4.0 g/kg GS for 5 weeks. As result, GS treatment alleviated liver injury in CCl4-induced hepatic fibrosis, presenting as decreases of the liver index, alanine aminotransferase, and aspartate transaminase. Histological staining and expression revealed that the enhanced oxidative stress, inflammatory and hepatic fibrosis in CCl4-induced models were attenuated by GS. Immunohistochemical staining showed that tight junction-associated proteins in intestinal mucosa were up-regulated by GS. 16S rRNA sequencing showed that GS rebalanced the gut dysbiosis manifested as improving alpha and beta diversity of gut microbiota, reducing the ratio of Firmicutes to Bacteroidetes, and regulating the relative abundance of various bacteria. In summary, GS decreased the intestinal permeability and rebalanced the gut microbiota to reduce the oxidative stress and inflammation, eventually attenuating CCl4-induced hepatic fibrosis.  相似文献   

11.
Chronic liver diseases are accompanied by changes in the biochemical pathways related to the regulation of apoptosis and extra-cellular matrix deposition. The present study was designed to investigate, using low density arrays, changes in the hepatic gene expression together with hepatic biochemical and histological alterations in rats that had liver impairment induced by chronic exposure to CCl4. Further, we examined the possible recovery of genetic and pathological changes following the cessation of the hepatotoxic injury. Experimental fibrosis was induced in male Wistar rats by CCl4 administration. Animals were subdivided into two groups. One group was given CCl4 and animals were killed at 8 and 12 weeks of treatment. The other group was treated with CCl4 for 6 weeks, the CCl4 was then stopped and, subsequently, subgroups of animals were killed after 1 and 2 weeks of recovery. CCl4 administration over 12 weeks was associated with significant changes in B-cell leukemia/lymphoma 2, procollagen type I α 2, matrix metalloproteinases 3 and 8, tissue inhibitors of metalloproteinases 1, 2, and 3 and the inhibitor of apoptosis 4 gene expressions. Recovery after CCl4 cessation was associated with changes in procollagen type I α 2, matrix metalloproteinase 7, tissue inhibitors of metalloproteinases 1 and 2, inhibitor of apoptosis 4, and survivin gene expressions. This study shows an association between changes in the expression of several genes regulating hepatic cell apoptosis, the fibrosis process, and the recovery of the hepatic function after removal of the toxic injury.  相似文献   

12.
Carbon tetrachloride (CCl4) is known to have hepatotoxic and nephrotoxic effects. During the two-month CCl4 exposure of Wistar rats, propolis extract (PE) and royal jelly (RJ) were added in order to test the potential protective effect against hepato-renal injury. Ketonuria, proteinuria, high creatinine and urea levels are the result of CCl4-induced nephrotoxicity. Severe disorders of hematological indicators indicate anemia; high values of leukocytes indicate inflammatory condition. Cytogenetic impairments in hepatocytes, aggregation of platelets, and hypoproteinemia indicate severe liver impairment. Results suggest a more significant protective role of RJ compared to PE. Both extracts regulated proteinuria, ketonuria, hypoproteinemia and reduced platelet aggregation in the hepatic circulation. The increase in the number of erythrocytes (RBC) suggest protective effects against anemia; the decrease in the number of leukocytes can be linked to anti-inflammatory effects. PE and RJ have a beneficial effect against hepato-renal injury, anemia and anti-inflammatory conditions caused by CCl4.  相似文献   

13.
The effect of an aqueous extract of Origanum vulgare (OV) leaves extract on CCl4-induced hepatotoxicity was investigated in normal and hepatotoxic rats. To evaluate the hepatoprotective activity of OV, rats were divided into six groups: control group, O. vulgare group, carbon tetrachloride (CCl4; 2 ml/kg body weight) group, and three treatment groups that received CCl4 and OV at doses of 50, 100, 150 mg/kg body weight orally for 15 days. Alanine amino transferase (ALT), alkaline phosphatase (ALP), and aspartate amino transferase (AST) in serum, lipid peroxide (LPO), GST, CAT, SOD, GPx, GR, and GSH in liver tissue were estimated to assess liver function. CCl4 administration led to pathological and biochemical evidence of liver injury as compared to controls. OV administration led to significant protection against CCl4-induced hepatotoxicity in dose-dependent manner, maximum activity was found in CCl4?+?OV3 (150 mg/kg body weight) groups and changes in the hepatocytes were confirmed through histopathological analysis of liver tissues. It was also associated with significantly lower serum ALT, ALP, and AST levels, higher GST, CAT, SOD, GPx, GR, and GSH level in liver tissue. The level of LPO also decreases significantly after the administration of OV leaves extract. The biochemical observations were supplemented with histopathological examination of rat liver sections. Thus, the study suggests O. vulgare showed protective activity against CCl4-induced hepatotoxicity in Wistar rats and might be beneficial for the liver toxicity.  相似文献   

14.
Milk fat globule-EGF factor 8 (MFGE8) has been reported to play various roles in acute injury and inflammation response. However, the role of MFGE8 in liver injury is poorly investigated. The present research was designed to clarify the expression and function of MFGE8 in carbon tetrachloride (CCl4)-induced liver injury. Using serum cytokine arrays, we selected a promising cytokine MFGE8 as the candidate in the process of hepatitis-fibrosis-hepatocellular carcinoma (HCC) progression, based on the elevated expression in both hepatic fibrosis and HCC models. We validated the increased expression of MFGE8 in liver tissues and serum samples of acute and chronic CCl4-induced mice. Immunohistochemistry staining of mouse liver tissues indicated that elevated MFGE8 expression was mainly derived from the injured hepatocytes. In addition, MFGE8 expression in the supernatant of primary hepatocytes was accumulated with prolongation of culture time, and CCl4 treatment further increased the expression of MFGE8. Moreover, a strong correlation between serum MFGE8 expression and liver transaminase activities suggested that MFGE8 may be a novel candidate in liver injury. Intriguingly, mice pretreated with MFGE8 were protected from CCl4-induced liver injury through antiapoptosis role in the early stage and proproliferation role in the late stage. MFGE8 reduced apoptosis by inhibiting the activation of IRE1α/ASK1/JNK pathway and promoted proliferation by phosphorylation of ERK and AKT. Moreover, serum MFGE8 expression was increased in hepatitis patients while decreased in liver cirrhosis patients. All the results suggest MFGE8 as a novel marker and promising therapeutic agent of liver injury.  相似文献   

15.
The aim of the present study is to evaluate the protective effect of manganese chloride against carbon tetrachloride (CCl4)-induced liver injury in rats. Manganese chloride (0.001, 0.01, 0.05 and 0.1 g/kg bw) was administered intragastrically for 28 consecutive days to male CCl4-treated rats. The hepatoprotective activity was assessed using various biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and superoxide dismutase (SOD). Histopathological changes in the liver of different groups were also studied. Administration of CCl4 increased the serum ALT, AST, ALP and GGT but decreased SOD levels in rats. Treatment with manganese chloride significantly attenuated these changes to nearly normal levels. The animals treated with manganese chloride have shown decreased necrotic zones and hepatocellular degeneration when compared to the liver exposed to CCl4 intoxication alone. Thus, the histopathalogical studies also supported the protective effect of manganese chloride. Therefore, the results of this study suggest that manganese chloride exerts hepatoprotection via promoting antioxidative properties against CCl4-induced oxidative liver damage.  相似文献   

16.
Antrodia cinnamomea (A. cinnamomea) is an indigenous medical fungus in Taiwan and has multiple biological functions, including hepatoprotective and immune-modulatory effects. Currently, the commercially available A. cinnamomea are mainly liquid- and solid-state fermented A. cinnamomea. However, the hepatoprotective effect of solid-state fermented A. cinnamomea has never been reported. Here we evaluate the ability of air-dried, ground and non-extracted wheat-based solid-state fermented A. cinnamomea (WFAC) to protect against carbon tetrachloride (CCl4)-induced hepatic injury in vivo. The results showed that oral administration of WFAC dose dependently (180, 540 and 1080 mg/kg) ameliorated the increase in plasma aspartate aminotransferase and alanine aminotransferase levels caused by chronic repeated CCl4 intoxication in rats. WFAC significantly reduced the CCl4-induced increase in hepatic lipid peroxidation levels and hydroxyproline contents, as well as reducing the spleen weight and water content of the liver. WFAC also restored the hepatic soluble protein synthesis and plasma albumin concentration in CCl4-intoxicated rats, but it did not affect the activities of superoxide dismutase, catalase, or glutathione peroxidase. In addition, a hepatic morphological analysis showed that the hepatic fibrosis and necrosis induced by CCl4 were significantly ameliorated by WFAC. Furthermore, the body weights of control rats and WFAC-administered rats were not significantly different, and no adverse effects were observed in WFAC-administered rats. These results indicate that WFAC is a nontoxic hepatoprotective agent against chronic CCl4-induced hepatic injury.  相似文献   

17.
Coumarins are a vast group of natural compounds and some of them possess antioxidant activities. The comparison of the antioxidant activity of some coumarins with various chemical molecular structure has not been investigated in previous studies. Therefore, this study was aimed to investigate the hepatoprotective effect against carbon tetrachloride (CCl4) -induced hepatic injury by coumarin (1,2-benzopyrone) and coumarin derivatives, esculetin (6,7-dihydroxycoumarin), scoparone (6,7-dimethoxycoumarin), and 4-methylumbelliferone (7-hyroxy-4-methyl) in male Sprague–Dawley rats. Product of lipid peroxidation, malondialdehyde (MDA), activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) were evaluated for oxidative stress in hepatic injury. Gamma glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH) were detected in plasma as a biomarker of hepatic injury. Significantly elevated levels of MDA and lowered levels of SOD and CAT activities were observed in liver of rats exposed to CCl4, when compared to control values. Similarly, administration of CCl4 increased LDH and GGT levels in serum. Pre-treatment of rats with esculetin (35 mg kg−1, orally) and scoparone (35 mg kg−1, orally) significantly prevented CCl4-induced decrease in MDA levels and increase in SOD and CAT, whereas 4-methylumbelliferone (35 mg kg−1) and coumarin (30 mg kg−1) had no effect against CCl4-induced rise in serum enzymes. Esculetin and scoparone also showed protective properties as was evidenced in reduced LDH and GGT levels in serum. The results of this study indicate that the chemical structures of coumarins play an important role in the prevention of oxidative stress.  相似文献   

18.
Hepatic fibrosis is a common pathological basis of liver cirrhosis and hepatocellular carcinomas. So, prevention and treatment of liver fibrosis is one of the crucial therapeutic goals in hepatology. Organic selenium, glutathione or probiotics supplementation could ameliorate hepatic fibrosis, respectively. The purpose of this study is to develop a novel selenium-glutathione-enriched probiotics (SGP) and to investigate its protective effect on CCl4-induced liver fibrosis in rats. Yeast strains with the high-yield glutathione were isolated and identified by analysis of 26S ribosomal DNA sequences. The fermentation parameters of SGP were optimized through single-factor, Plackett–Burman (PB) design and response surface methodology (RSM). The final SGP contained 38.4 μg/g of organic selenium, 34.1 mg/g of intracellular glutathione, approximately 1×1010 CFU/g live Saccharomyces cerevisiae and 1×1012 CFU/g live Lactobacillus acidophilus. SGP had better protective effects on liver fibrosis than selenium, glutathione or probiotics, respectively. The hepatic silent information regulator 1 (SIRT1) level was down-regulated and oxidative stress, endoplasmic reticulum (ER) stress, inflammation and phosphorylated MAPK was increased in CCl4-treated rats. However, SGP can significantly reverse these changes caused by CCl4. Our findings suggest that SGP was effective in attenuating liver fibrosis by the activation of SIRT1 signaling and attenuating hepatic oxidative stress, ER stress, inflammation and MAPK signaling.  相似文献   

19.
The aim of this study was to investigate the protective effect of 3-alkynyl selenophene (3-ASP) on acute liver injury induced by carbon tetrachloride (CCl4) and 2-nitropropane (2-NP) in rats. On the first day of treatment, the animals received 3-ASP (25 mg/kg, p.o.). On the second day, the rats received CCl4 (1 mg/kg, i.p.) or 2-NP (100 mg/kg, p.o.). Twenty-four hours after CCl4 or 2-NP administration, the animals were euthanized, and their plasma and liver were removed for biochemical and histological analyses. The histological analysis revealed extensive injury in the liver of CCl4-exposed and 2-NP-exposed rats, which was attenuated by 3-ASP. 3-ASP significantly attenuated (1) the increase in plasmatic aspartate and alanine aminotransferase activities and lipid peroxidation levels induced by CCl4 and 2-NP; (2) the inhibition of δ-aminolevulinic dehydratase activity caused by 2-NP; and (3) the decrease in ascorbic acid (AA) levels and catalase (CAT) activity caused by CCl4. AA levels and CAT activity remained unaltered in the liver of rats exposed to 2-NP. The protective effect of 3-ASP on acute liver injury induced by CCl4 and 2-NP in rats was demonstrated.  相似文献   

20.
《Life sciences》1993,53(18):PL291-PL296
The hepatoprotective effects of a newly synthesized 15 amino acid fragment code named BPC 157 was evaluated in comparison with the reference standards (bromocriptine, amantadine and somatostatin) in various experimental models of liver injury in rats: 24 h-bile duct + hepatic artery ligation 48 h-restraint stress and CCl4 administration. BPC 157 administered either intragastrically or intraperitoneally, significantly prevented the development of liver necrosis or fatty changes in rats subjected to 24 h bile duct + hepatic artery ligation, 48 h-restraint stress, CCl4 treatment (1 ml/kg i.p., sacrifice 48 h thereafter). The other reference drugs had either little or no protective actions in these models. Noteworthy, the laboratory test results for bilirubin, SGOT, SGPT fully correlated with the macro/microscopical findings. Thus, on the basis of consistent protective eefect of BPC 157, possible clinical application in liver diseases is now warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号