首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time course of tissue deposition, and is thus very suitable for studies of ECM formation in engineered heart valve tissues.  相似文献   

2.
This study presents an image-based finite element analysis incorporating histological photomicrographs of heart valve tissues. We report stress fields inside heart valve tissues, where heterogeneously distributed collagen fibres are responsible for transmitting forces into cells. Linear isotropic and anisotropic tissue material property models are incorporated to quantify the overall stress distributions in heart valve tissues. By establishing an effective predictive method with new computational tools and by performing virtual experiments on the heart valve tissue photomicrographs, we clarify how stresses are transferred from matrix to cell. The results clearly reveal the roles of heterogeneously distributed collagen fibres in mitigating stress developments inside heart valve tissues. Moreover, most local peak stresses occur around cell nuclei, suggesting that higher stress may be mediated by cells for biomechanical regulations.  相似文献   

3.
The structural and functional effects of the “edge-to-edge” technique on the human mitral valve have been investigated, paying particular attention to the diastolic phase. An advanced finite element model of the valve has been developed, using a hyperelastic material schematization, suitable geometry and constraint conditions, and an effective fluidodynamic analysis. The edge-to-edge suture has been applied on this model and the diastolic phase has been simulated. The results of this calculation show that the operation increases the transvalvular pressure and the maximum stress in the leaflets, which reaches a level similar to that of the systolic phase. The influence of suture position and extension, and the mitral annulus dimension has also been investigated. The results indicate that a lateral location of the stitch is better than a central one, both regarding valve functionality (pressure level and mobility) and internal stresses level, that a longer suture worsens the valve functionality but reduces the stresses level, finally, that the dilatation of the mitral annulus does not affect the valve functionality but increases the stresses level.  相似文献   

4.
Preclinical studies of tissue-engineered heart valves (TEHVs) showed retraction of the heart valve leaflets as major failure of function mechanism. This retraction is caused by both passive and active cell stress and passive matrix stress. Cell-mediated retraction induces leaflet shortening that may be counteracted by the hemodynamic loading of the leaflets during diastole. To get insight into this stress balance, the amount and duration of stress generation in engineered heart valve tissue and the stress imposed by physiological hemodynamic loading are quantified via an experimental and a computational approach, respectively.  相似文献   

5.
The network of collagen fibers in the aortic valve leaflet is believed to play an important role in the strength and durability of the valve. However, in addition to its stress-bearing role, such a fiber network has the potential to produce functionally important shape changes in the closed valve under pressure load. We measured the average pattern of the collagen network in porcine aortic valve leaflets after staining for collagen. We then used finite element simulation to explore how this collagen pattern influences the shape of the closed valve. We observed a curved or bent pattern, with collagen fibers angled downward from the commissures toward the center of the leaflet to form a pattern that is concave toward the leaflet free edge. Simulations showed that these curved fiber trajectories straighten under pressure load, leading to functionally important changes in closed valve shape. Relative to a pattern of straight collagen fibers running parallel to the leaflet free edge, the concave pattern of curved fibers produces a closed valve with a 40% increase in central leaflet coaptation height and with decreased leaflet billow, resulting in a more physiological closed valve shape. Furthermore, simulations show that these changes in loaded leaflet shape reflect changes in leaflet curvature due to modulation of in-plane membrane stress resulting from straightening of the curved fibers. This effect appears to play an important role in normal valve function and may have important implications for the design of prosthetic and tissue engineered replacement valves.  相似文献   

6.
7.
Due to the increasing number of heart valve diseases, there is an urgent clinical need for off-the-shelf tissue engineered heart valves. While significant progress has been made toward improving the design and performance of both mechanical and tissue engineered heart valves (TEHVs), a human implantable, functional, and viable TEHV has remained elusive. In animal studies so far, the implanted TEHVs have failed to survive more than a few months after transplantation due to insufficient mechanical properties. Therefore, the success of future heart valve tissue engineering approaches depends on the ability of the TEHV to mimic and maintain the functional and mechanical properties of the native heart valves. However, aside from some tensile quasistatic data and flexural or bending properties, detailed mechanical properties such as dynamic fatigue, creep behavior, and viscoelastic properties of heart valves are still poorly understood. The need for better understanding and more detailed characterization of mechanical properties of tissue engineered, as well as native heart valve constructs is thus evident. In the current review we aim to present an overview of the current understanding of the mechanical properties of human and common animal model heart valves. The relevant data on both native and tissue engineered heart valve constructs have been compiled and analyzed to help in defining the target ranges for mechanical properties of TEHV constructs, particularly for the aortic and the pulmonary valves. We conclude with a summary of perspectives on the future work on better understanding of the mechanical properties of TEHV constructs.  相似文献   

8.
Excised anterior mitral leaflets exhibit anisotropic, non-linear material behavior with pre-transitional stiffness ranging from 0.06 to 0.09 N/mm2 and post-transitional stiffness from 2 to 9 N/mm2. We used inverse finite element (FE) analysis to test, for the first time, whether the anterior mitral leaflet (AML), in vivo, exhibits similar non-linear behavior during isovolumic relaxation (IVR). Miniature radiopaque markers were sewn to the mitral annulus, AML, and papillary muscles in 8 sheep. Four-dimensional marker coordinates were obtained using biplane videofluoroscopic imaging during three consecutive cardiac cycles. A FE model of the AML was developed using marker coordinates at the end of isovolumic relaxation (when pressure difference across the valve is approximately zero), as the reference state. AML displacements were simulated during IVR using measured left ventricular and atrial pressures. AML elastic moduli in the radial and circumferential directions were obtained for each heartbeat by inverse FEA, minimizing the difference between simulated and measured displacements. Stress–strain curves for each beat were obtained from the FE model at incrementally increasing transmitral pressure intervals during IVR. Linear regression of 24 individual stress–strain curves (8 hearts, 3 beats each) yielded a mean (±SD) linear correlation coefficient (r2) of 0.994±0.003 for the circumferential direction and 0.995±0.003 for the radial direction. Thus, unlike isolated leaflets, the AML, in vivo, operates linearly over a physiologic range of pressures in the closed mitral valve.  相似文献   

9.
Deployment of stent-grafts, derived from synthetic biomaterials, is an established minimally invasive approach for effectively treating abdominal aortic aneurysms (AAAs). However, a notable disadvantage associated with this surgical technique is migration of the deployed stent-graft due to poor biocompatibility and inadequate integration in vivo. Recently, tissue-engineered extracellular matrices (ECMs) have shown early promise as integrating stabilisation collars in this setting due to their ability to induce a constructive tissue remodelling response after in vivo implantation. In the present study the effects of stent loading on an ECM?s mechanical properties were investigated by characterising the compression and loading effects of endovascular stents on porcine urinary bladder matrix (UBM) scaffolds. Results demonstrated that the maximum stress was induced when the stent force was 8-times higher than a standard commercially available stent-graft and this represented about 20% of the failure strength of the UBM material. In addition, the influence of stent shape was also investigated. Findings demonstrated that the stress induced was higher for circular stents at low forces and a higher stress was induced on square stents when increased force was applied. Our findings demonstrate that porcine UBM possesses sufficient mechanical strength to withstand the compression and loading effects of commercially available stent-grafts in the setting of endovascular aneurysm repair.  相似文献   

10.
11.
On the biomechanics of heart valve function   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
深龋修复的力学模型分析   总被引:5,自引:0,他引:5  
目的:模拟下颌第一磨牙Ⅰ类洞深龋,计算机分析得到修复体最佳应力分布时基底材料与修复材料厚度比例。方法 采用三维有限元法建立数值模型,利用SAP84(V4.2)程序计算并作力学分析。结果:在能护髓前提下应尽量减少次基厚度(1)银汞修复时,银汞合金厚度应大于基底厚度时应力分布最佳。(2)树脂修复时,树脂厚度与基底厚度相近,应力分布最佳。结论 根据材料弹性模量来决定基底材料与修复材料厚度比例。  相似文献   

14.
In this study, the microwave rewarming process of cryopreserved samples with embedded superparamagnetic (SPM) nanoparticles was numerically simulated. The Finite Element Method (FEM) was used to calculate the coupling of the electromagnetic field and the temperature field in a microwave rewarming system composed of a cylindrical resonant cavity, an antenna source, and a frozen sample phantom with temperature-dependent properties. The heat generated by the sample and the nanoparticles inside the electromagnetic field of the microwave cavity was calculated. The dielectric properties of the biological tissues were approximated using the Debye model, which is applicable at different temperatures. The numerical results showed that, during the rewarming process of the sample phantom without nanoparticles, the rewarming rate was 29.45 °C/min and the maximum temperature gradient in the sample was 3.58 °C/mm. If nanoparticles were embedded in the sample, and the cavity power was unchanged, the rewarming rate was 47.76 °C/min and the maximum temperature gradient in the sample was 1.64 °C/mm. In the presence of SPM nanoparticles, the rewarming rate and the maximum temperature gradient were able to reach 20.73 °C/min and 0.68 °C/mm at the end of the rewarming under the optimized cavity power setting, respectively. The ability to change these temperature behaviors may prevent devitrification and would greatly diminish thermal stress during the rewarming process. The results indicate that the rewarming rate and the uniformity of temperature distribution are increased by nanoparticles. This could be because nanoparticles generated heat in the sample homogeneously and the time-dependent parameters of the sample improved after nanoparticles were homogeneously embedded within it. We were thus able to estimate the positive effect of SPM nanoparticles on microwave rewarming of cryopreserved samples.  相似文献   

15.
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage.  相似文献   

16.
A numerical model of the medial open wedge tibial osteotomy based on the finite element method was developed. Two plate positions were tested numerically. In a configuration, (a), the plate was fixed in a medial position and (b) in an anteromedial position. The simulation took into account soft tissues preload, muscular tonus and maximal gait load.

The maximal stresses observed in the four structural elements (bone, plate, wedge, screws) of an osteotomy with plate in medial position were substantially higher (1.13–2.8 times more) than those observed in osteotomy with an anteromedial plate configuration. An important increase (1.71 times more) of the relative micromotions between the wedge and the bone was also observed. In order to avoid formation of fibrous tissue at the bone wedge interface, the osteotomy should be loaded under 18.8% (~50 kg) of the normal gait load until the osteotomy interfaces union is achieved.  相似文献   

17.
As the interaction between tissue adaptation and the mechanical condition within tissues is complex, mathematical models are desired to study this interrelation. In this study, a mathematical model is presented to investigate the interplay between collagen architecture and mechanical loading conditions in the arterial wall. It is assumed that the collagen fibres align along preferred directions, situated in between the principal stretch directions. The predicted fibre directions represent symmetrically arranged helices and agree qualitatively with morphometric data from literature. At the luminal side of the arterial wall, the fibres are oriented more circumferentially than at the outer side. The discrete transition of the fibre orientation at the media-adventitia interface can be explained by accounting for the different reference configurations of both layers. The predicted pressure-radius relations resemble experimentally measured sigma-shaped curves. As there is a strong coupling between the collagen architecture and the mechanical loading condition within the tissue, we expect that the presented model for collagen remodelling is useful to gain further insight into the processes involved in vascular adaptation, such as growth and smooth muscle tone adaptation.  相似文献   

18.
Finite element (FE) modelling has been proposed as a tool for estimating fracture risk and patient-specific FE models are commonly based on computed tomography (CT). Here, we present a novel method to automatically create personalised 3D models from standard 2D hip radiographs. A set of geometrical parameters of the femur were determined from seven ap hip radiographs and compared to the 3D femoral shape obtained from CT as training material; the error in reconstructing the 3D model from the 2D radiographs was assessed. Using the geometry parameters as the input, the 3D shape of another 21 femora was built and meshed, separating a cortical and trabecular compartment. The material properties were derived from the homogeneity index assessed by texture analysis of the radiographs, with focus on the principal tensile and compressive trabecular systems. The ability of these FE models to predict failure load as determined by experimental biomechanical testing was evaluated and compared to the predictive ability of DXA. The average reconstruction error of the 3D models was 1.77 mm (±1.17 mm), with the error being smallest in the femoral head and neck, and greatest in the trochanter. The correlation of the FE predicted failure load with the experimental failure load was r2=64% for the reconstruction FE model, which was significantly better (p<0.05) than that for DXA (r2=24%). This novel method for automatically constructing a patient-specific 3D finite element model from standard 2D radiographs shows encouraging results in estimating patient-specific failure loads.  相似文献   

19.
目的:针对包括一侧髁状突的下颌骨缺损,通过有限元应力分析,了解单端固定式下颌骨修复体在功能运动时的受力与变形规律,以期寻求更加合理的修复体的设计和固定方式。方法:建立下颌骨断端和修复体的简易三维模型,模拟咀嚼运动,施加垂直方向载荷,进行有限元法应力分析,计算出该模型各组成部分的应力分布和受力变形。结果:在该模型加载时,延伸板基部和近断端处上部的螺钉颈部是应力集中的部位,近断端处下部的螺钉颈部和修复体的远端舌侧为形变最大的部位。结论:单端固定式下颌骨修复体在加载时,延伸板的基部和靠近断端的固定螺钉是应力集中的部位,修复体远离固定的一侧是变形最大的部位,提示我们应将延伸板形态设计为尽可能加宽,并应增加下颌骨下缘处的固定,使修复体与下颌骨断端受力更加合理,变形也尽可能缩小。  相似文献   

20.
A new 2D method to implement transient contact using Comsol Multiphysics (finite element analysis software that enables multiphysics simulations) is described, which is based on Hertzian contact. This method is compared to the existing (default) contact method that does not enable real transient simulations, but instead performs steady-state solutions where time is a constant. The two types of contact modelling have been applied to simple 2D biological heart valve models, undergoing strains in the region of 10% under 20 kPa pressure (applied over 0.3 s). Both the methods predicted comparable stress patterns, locations of peak stresses, deformations and directions of principal stress. The default contact method predicted slightly greater contact stresses, but spreads over a shorter surface length than the new contact method. The default contact method is useful for contact systems with little transient dependency, due to ease of use. However, where transient conditions are important the new contact method is preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号