首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary— Polyclonal antibodies against 4-O-methyl-glucuronoxylan and α L-1-3 arabinofuranosyl poly-β-d-1-4-xylopyranosyl were raised from rabbits. An immunocytochemical technique was used to localize xylans and arabinoxylans in the plant cell walls of the apical internode of two maize lines of different digestibility. The sclerenchyma, fibres and xylem (lignified tissues) and the parenchyma (non-lignified tissue) were studied. The arabinoxylans were more heavily labelled than the xylans in the lignified tissues of the less digestible maize whereas in the more digestible line the labelling of the two polysaccharides was similar. The xylans and arabinoxylans were localized in the secondary cell wall. In both maize lines, labelling increased from the base upwards of the apical internode, reflecting the changes in growth stage.  相似文献   

2.
Reis D  Vian B 《Comptes rendus biologies》2004,327(9-10):785-790
The helicoidal organization of secondary cell walls is overviewed from several examples. Both the plywood texture and the occurrence of characteristic defects strongly suggest that the wall ordering is relevant of a cholesteric liquid-crystal assembly that is rapidly and strongly consolidated by lignification. A preferential localization of glucuronoxylans, major matrix components, and in vitro re-association experiments emphasize their preeminent role: (1) during the construction of the composite as directing the cellulose microfibrils in a helicoidal array; (2) during the lignification of the composite as a host structure for lignin precursors.  相似文献   

3.
Destarched and deproteinated water-unextractable material (WUM) of rye outer layers was sequentially treated with lichenase and cellulase to digest β-glucans and a part of the cellulose. As a result, the polymeric cell-wall material (CWM) initially associated with these polysaccharides was released into solution (AXL and AXC for lichenase- and cellulase-extractable fractions, respectively). A portion of the material that self-aggregated during extractions was further solubilized with DMSO (XD and XD-P for the fraction left in the solution and that precipitated during dialysis, respectively). Arabinoxylans (AXs) recovered from these fractions were composed of populations with different degrees of substitution with α-l-arabinofuranosyl residues (Araf). Their counterparts present in the AXL and AXC fractions exhibited higher (0.60 and 0.75) arabinose-to-xylose ratios (Ara/Xyl) and represented 27% and 32% of the isolated AXs, respectively. The xylans of the XD and XD-P fractions had a very low Ara/Xyl ratio (0.16 and 0.09) and accounted for 23% and 18%, respectively. Based on the results of ammonium sulfate fractionation and sugar analysis, it has been shown that AXL consisted of AX subfractions having Ara/Xyl in a narrow range (0.50-0.66). By contrast, the cellulase-extractable AXs were characterized by the presence of the highly branched subfractions (Ara/Xyl of 1.00) as well. Quite unexpectedly, the higher amounts of ferulic acid (FA) were found in the cell-wall fractions enriched in xylans than in the AX-containing fractions. Furthermore, as demonstrated by 1H NMR and Fourier transform infrared spectroscopy, xylans were substituted with α-d-glucuronopyranosyl residues (GlcpA).  相似文献   

4.
Gynoecium diversity and systematics in basal monocots   总被引:5,自引:0,他引:5  
Gynoecium and ovule structure was comparatively studied in representatives of the basal monocots, including Acorales (Acoraceae), Alismatales (Araceae, Alismataceae, Aponogetonaceae, Butomaceae, Hydrocharitaceae, Junc‐aginaceae, Limnocharitaceae, Potamogetonaceae, Scheuchzeriaceae, Tofieldiaceae), Dioscoreales (Dioscoreaceae, Taccaceae), and Triuridaceae as a family of uncertain position in monocots. In all taxa studied the carpels or gynoecia are closed at anthesis. This closure is attained in different ways: (1) by secretion without postgenital fusion (Araceae, Hydrocharitaceae); (2) by partly postgenitally fused periphery but with a completely unfused canal (Alismataceae, Aponogetonaceae, Butomaceae, Limnocharitaceae, Scheuchzeriaceae, Dioscoreaceae, Taccaceae); (3) by completely postgenitally fused periphery but with an unfused canal in the centre (Acoraceae, Tofieldiaceae); (4) by complete postgenital fusion and without an (unfused) canal (Juncaginaceae, Potamogetonaceae). In many Alismatales (but without Araceae) carpels have two lateral lobes. The stigmatic surface is restricted to the uppermost part of the ventral slit (if the carpel is plicate); it is never distinctly double‐crested (Butomaceae?). Stigmas are commonly unicellular‐papillate and secretory in most taxa. The locules are filled with a (often) mucilaginous secretion in a number of taxa. Superficial (probably intrusive) ethereal oil cells were found in the carpel wall of Acorus gramineus (as in Piperales!). Idioblasts in carpels are otherwise rare. A number of basal monocots has orthotropous ovules, which is perhaps the plesiomorphic condition in the group. The presence of almost tenuinucellar (pseudocrassinucellar) ovules is relatively common (Acoraceae, many Araceae, some Alismatales s.s.), whereas completely tenuinucellar ovules are rare and do not characterize larger groups. However, crassinucellar ovules occur in the largest number of families among the study group (basal Araceae, many Alismatales s.s.) The outer integument is always annular in orthotropous ovules. The inner integument is often lobed and it mostly forms the micropyle, whereas the outer integument is always unlobed. Gynoecium structure supports the isolated position of Acoraceae as sister to all other monocots. However, in an overall view, if compared with all other families, Acoraceae clearly shows the greatest similarities with Araceae.  相似文献   

5.
Structural arrangement of bacterial cell walls   总被引:1,自引:0,他引:1  
  相似文献   

6.
Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.  相似文献   

7.
Revealing the structural and functional diversity of plant cell walls   总被引:1,自引:0,他引:1  
The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.  相似文献   

8.
Structural analysis of the cell walls regenerated by carrot protoplasts   总被引:1,自引:0,他引:1  
A procedure was developed to isolate protoplasts rapidly from carrot (Daucus carota L. cv. Danvers) cells in liquid culture. High purity of cell-wall-degrading enzymes and ease of isolation each contributed to maintenance of viability and initiation of regeneration of the cell wall by a great majority of the protoplasts. We used this system to re-evaluate the chemical structure and physical properties of the incipient cell wall. Contrary to other reports, callose, a (1 3)-d-glucan whose synthesis is associated with wounding, was not a component of the incipient wall of carrot protoplasts. Intentional wounding by rapid shaking or treatment with dimethyl sulfoxide initiated synthesis of callose, detected both by Aniline blue and Cellufluor fluorescence of dying cells and by an increase in (1 3)-linked glucan quantified in methylation analyses. Linkage analyses by gas-liquid chromatography of partially methylated alditol-acetate derivatives of polysaccharides of the incipient wall of protoplasts and various fractions of the cell walls of parent cells showed that protoplasts quickly initiated synthesis of the same pectic and hemicellulosic polymers as normal cells, but acid-resistant cellulose was formed slowly. Complete formation of the wall required 3 d in culture, and at least 5 d were required before the wall could withstand turgor. Pectic substances synthesized by protoplasts were less anionic than those of parent cells, and became more highly charged during wall regeneration. We propose that de-esterification of the carboxyl groups of pectin uronic-acid units permits formation of a gel that envelops the protoplast, and the rigid cellulose-hemicellulose frame-work forms along with this gel matrix.Abbreviations DEAE Diethylaminoethyl - DMSO dimethyl sulfoxide - ECP extracellular polymers - EDTA ethylenediaminetetraacetic acid - HGA nomogalacturonan - RG rhamnogalacturonan - Tes N-tris(hydroxymethyl)methyl-2-amino-ethanesufonic acid - TFA trifluoroacetic acid Journal paper No. 11,776 of the Purdue University Agriculture Experiment Station  相似文献   

9.

Background

Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed.

Scope

The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.  相似文献   

10.
The structures of xyloglucans from several plants in the subclass Asteridae were examined to determine how their structures vary in different taxonomic orders. Xyloglucans, solubilized from plant cell walls by a sequential (enzymatic and chemical) extraction procedure, were isolated, and their structures were characterized by NMR spectroscopy and mass spectrometry. All campanulids examined, including Lactuca sativa (lettuce, order Asterales), Tenacetum ptarmiciflorum (dusty miller, order Asterales), and Daucus carota (carrot, order Apiales), produce typical xyloglucans that have an XXXG-type branching pattern and contain alpha-d-Xylp-, beta-D-Galp-(1-->2)-alpha-D-Xylp-, and alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xylp- side chains. However, the lamiids produce atypical xyloglucans. For example, previous analyses showed that Capsicum annum (pepper) and Lycopersicon esculentum (tomato), two species in the order Solanales, and Olea europaea (olive, order Lamiales) produce xyloglucans that contain arabinosyl and galactosyl residues, but lack fucosyl residues. The XXGG-type xyloglucans produced by Solanaceous species are less branched than the XXXG-type xyloglucan produced by Olea europaea. This study shows that Ipomoea pupurea (morning glory, order Solanales), Ocimum basilicum (basil, order Lamiales), and Plantago major (plantain, order Lamiales) all produce xyloglucans that lack fucosyl residues and have an unusual XXGGG-type branching pattern in which the basic repeating core contains five glucose subunits in the backbone. Furthermore, Neruim oleander (order Gentianales) produces an XXXG-type xyloglucan that contains arabinosyl, galactosyl, and fucosyl residues. The appearance of this intermediate xyloglucan structure in oleander has implications regarding the evolutionary development of xyloglucan structure and its role in primary plant cell walls.  相似文献   

11.
Hosoo Y  Imai T  Yoshida M 《Protoplasma》2006,229(1):11-19
Summary. We investigated the diurnal differences in the innermost surface of tracheid cell walls at various developmental stages from cambium to mature xylem. Cryptomeria japonica saplings were cultivated in a growth chamber with a light cycle set at 14 h of light and 10 h of darkness. Samples were collected from the saplings during both the light and dark periods. The innermost surface of cell walls was immunogold-labeled with anti-glucomannan or anti-xylan antiserum and was observed by field emission scanning electron microscopy. Diurnal differences in the aspect of the innermost surface of cell walls were seen only in S2-layer-forming tracheids; cellulose microfibrils were clearly evident during the light period, and amorphous material containing glucomannans and xylans was prevalent during the dark period. Cellulose microfibrils were present at the primary-wall formation and S1-layer-forming stages, and many warts were observed in the mature tracheids, regardless of the time of sampling. The densities of labeled glucomannans on the innermost surface of cell walls in S1- and S2-forming tracheids and of labeled xylans in S2-forming tracheids during the dark period were significantly higher than those during the light period. These results suggest a diurnal periodicity in the supply of cell wall matrix containing hemicellulose to the innermost surface of developing secondary walls. Correspondence and reprints: Laboratory of Bio-material Physics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan. Present address: Chair of Climate Change Science for Forestry and Water Resources, Graduate School of Science and Technology, Niigata University, Niigata, Japan.  相似文献   

12.
The importance of angiosperms to sustaining humanity by providing a wide range of 'ecosystem services' warrants increased exploration of their genomic diversity. The nearly completed sequences for two species representing the major angiosperm subclasses, specifically the dicot Arabidopsis thaliana and the monocot Oryza sativa, provide a foundation for comparative analysis across the angiosperms. The angiosperms also exemplify some challenges to be faced as genomics makes new inroads into describing biotic diversity, in particular polyploidy (genome-wide chromatin duplication), and much larger genome sizes than have been studied to date.  相似文献   

13.
Advances in determination of polymer structure and in preservation of structure for electron microscopy provide the best view to date of how polysaccharides and structural proteins are organized into plant cell walls. The walls that form and partition dividing cells are modified chemically and structurally from the walls expanding to provide a cell with its functional form. In grasses, the chemical structure of the wall differs from that of all other flowering plant species that have been examined. Nevertheless, both types of wall must conform to the same physical laws. Cell expansion occurs via strictly regulated reorientation of each of the wall's components that first permits the wall to stretch in specific directions and then lock into final shape. This review integrates information on the chemical structure of individual polymers with data obtained from new techniques used to probe the arrangement of the polymers within the walls of individual cells. We provide structural models of two distinct types of walls in flowering plants consistent with the physical properties of the wall and its components.  相似文献   

14.
Structural studies were carried out on a teichuronic acid isolated from a mild acid extract of Bacillus subtilis AHU 1219 cell walls. The teichuronic acid contained D-glucuronic acid, D-glucose, D-galactose, L-serine and L-threonine in a molar ratio of 1:1:1:0.5:0.5. Results of analyses of the polysaccharide by Smith degradation, methylation and 1H-NMR and 13C-NMR spectroscopy, in combination with data on analyses of oligosaccharides obtained by partial acid hydrolysis and alkaline hydrolysis of the polymer, led to the most likely structure for the repeating unit, ----4)(L-Ser/L-Thr)-D-GlcA(beta 1----3)-D-Glc(beta 1----4)-D-Gal(alpha 1----. In each unit, either amino acid is linked to the glucuronic acid residue through an amide bond.  相似文献   

15.
Structural studies were carried out on the teichoic acids in cell walls of Listeria monocytogenes serotypes 3a, 4b, 4f, 6, and 7. The structure of the dephosphorylated repeating units, obtained by treatment with 46% hydrogen fluoride or alkaline hydrolysis, was examined by methylation analysis, acetolysis, and 1H-NMR spectroscopy. The results of Smith degradation of the teichoic acids and 13C-NMR spectroscopy led to the following most likely structures of the repeating units of the teichoic acids:----1-[N-acetylglucosaminyl(alpha 1----4)]ribitol-5-phosphate----for serotype 3a,----4-[galactosyl(alpha 1----6)][glucosyl(beta 1----3)]N -acetylglucosaminyl(beta 1----2)ribitol-5-phosphate----for serotype 4b,----4-[galactosyl(alpha 1----6)][N -acetylglucosaminyl(alpha 1----3)]N-acetylglucosaminyl(beta 1----2)ribitol -5-phosphate----for serotype 4f,----4-N-acetylglucosaminyl(beta 1----4)ribitol -5-phosphate----for serotype 6, and----1-ribitol-5-phosphate----for serotype 7. About 40% of the repeating units of the teichoic acid from serotype 4f were not substituted at C-3 of beta-N-acetylglucosaminyl residues.  相似文献   

16.
Transgene silencing in monocots   总被引:31,自引:0,他引:31  
  相似文献   

17.
Two rat monoclonal antibodies have been generated to plant cell wall (1-->4)-beta-D-xylans using a penta-1,4-xylanoside-containing neoglycoprotein as an immunogen. The monoclonal antibodies, designated LM10 and LM11, have different specificities to xylans in relation to the substitution of the xylan backbone as indicated by immunodot assays and competitive-inhibition ELISAs. LM10 is specific to unsubstituted or low-substituted xylans, whereas LM11 binds to wheat arabinoxylan in addition to unsubstituted xylans. Immunocytochemical analyses indicated the presence of both epitopes in secondary cell walls of xylem but differences in occurrence in other cell types.  相似文献   

18.
19.
Plant cell walls   总被引:3,自引:0,他引:3  
Keegstra K 《Plant physiology》2010,154(2):483-486
  相似文献   

20.
Abstract Mild alkaline solutions (β-elimination), after removing the non-covalently bonded wall materials by hot SDS, released 13% and 26% of remaining wall proteins from mycelial and yeast cells of Candida albicans , respectively. When the β-elimination was carried out after digestion of the walls with chitinase, four-fold more proteinaceous materials were released from mycelium and a similar amount in yeast walls. The solubilized materials were shown to be highly polydisperse, and endo-glycosidase H reduced their polydispersity and molecular masses, revealing different electrophoretic patterns in yeast and mycelial cell walls. The solubilized mycelial proteins carried N-glycosidic sugar chains and the epitopes recognized by two monoclonal antibodies were preserved, although showing a different behaviour in yeast walls. These results are consistent with the idea that significant amounts of intrinsic O-glycosylated mannoproteins are interconnected in the walls of C. albicans .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号