首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weedy broomrape species, such as sunflower broomrape (Orobanche cumana Wallr.) and Egyptian broomrape [Phelipanche aegyptiaca Pers. (syn. O. aegyptiaca)], require a period of pre-conditioning before they can respond to germination stimulants. Thus, the sensitivity of weedy broomrape seeds to germination stimulants could be an important factor for broomrape control. In this study, the influence of conditioning agents, conditioning period (0–21 days) and germination stimulants on the germination of sunflower broomrape and Egyptian broomrape seeds was analyzed. Without conditioning, the sunflower and Egyptian broomrape seeds exhibited negligible germination responses to the stimulants. The germination rate of the broomrape seeds increased rapidly with conditioning period and reached a maximum under a conditioning period of 4–10 days; further prolonged conditioning resulted in a decrease in the germination rate. Gibberellic acid (GA3) could not only break the dormancy of the sunflower and Egyptian broomrape seeds but also maintained the high sensitivity of these seeds even after 21 days of conditioning. Furthermore, 100 µM of GA3 induced the germination of the Egyptian broomrape seeds. The stimulants that induced Egyptian broomrape germination were ranked in decreasing order as GR24 (76.8?%), strigol (76.1?%), tobacco root exudates (49.5?%), dehydrocostus lactones (DCL, 39.2?%), and maize root exudates (18?%). In contrast, GA3 did not directly induce sunflower broomrape seed germination, which responded to strigol (62.8?%)?>?maize root exudates (58.2?%)?>?GR24 (57.9?%)?>?tobacco root exudates (41.6?%)?>?DCL (41.3?%). These results indicate specialized recognition of germination stimulants by sunflower and Egyptian broomrape. This study may contribute to a better understanding of parasitic weed germination and may lead to improved control strategies.  相似文献   

2.
A research was carried out to evaluate the influence of temperature on seed respiration response of maize, cotton, grain sorghum and sunflower during imbibition, and to define reliable indices for a fast evaluation of cold-sensitivity at germination level in plants. The seed respiration activity was measured during seed imbibition at 25 °C (optimal) and 15 °C (suboptimal) constant temperatures, using a homemade respiration chamber adapted to an infrared gas analyzer. At 15 °C, sunflower and sorghum maintained high levels of seed germination (≥90 %), whilst this last dropped in cotton (36.7 %) and maize (27.8 %). With respect to this, cotton and maize seem to be cold sensitive during germination. Instantaneous seed respiration during imbibition versus temperature or thermal time could not be used as a good indicator for cold tolerance, since the levels of CO2 recorded at 15 °C in cotton (higher than the other species) and maize (similar to that of sorghum and sunflower) did not correspond to adequate seed germination. Differently, the rates (b coefficient of linear regressions) of accumulation of CO2 respired at optimal and suboptimal temperatures during the first hours of imbibition (up to approximately 24 h from the start of experiment), were significantly different in maize and cotton, whilst they did not differ in sorghum and sunflower. Therefore, the shift between slopes may represent a reliable index for seed cold-sensitivity assessment during early germination.  相似文献   

3.
The effects of organic enrichment on sediment biogeochemistry was studied in diffusion controlled sediment mesocosms, where labile organic matter (OM) (fish feed) pulses were added once a week to the sediment surface. Two types of sediments, differing mainly in content of reactive Fe, were used. The aim of this experiment was two-fold, (1) to evaluate the importance of Fe-driven sulfide buffering for sulfide accumulation in surface enriched sediments, and (2) to estimate the diagenetic capacity for degradation of labile OM near the sediment surface. The simulated OM loading rate of 375 mmol C m?2 day?1 led to a 5–6 times increase in CO2-production and a 4–5 times increase in O2-uptake. Sulfate reduction estimated by radiotracer experiments and CO2-release was 105–131 mmol m?2 day?1, but accumulation of porewater sulfide was low in both sediment types. Instead 99% of sulfide was oxidized with O2 at the sediment water interface in the low Fe treatment, whereas 46% of produced sulfide precipitated as Fe-S compound in the high Fe treatment resulting in significantly lower O2-uptake. Furthermore, the accumulation of up to 30% of added OM by the end of the experiment indicated a saturation of the heterotrophic microbial communities in the upper enriched surface layer. These results suggest a maximum diagenetic capacity for OM degradation in the range of ~25 μmol C cm?3 day?1 or 260 mmol m?2 day?1 for the present sediment types.  相似文献   

4.
The objective of this research was to determine the effects of variety and storage duration on the nutrient digestibility and the digestible (DE) and metabolisable (ME) energy content in maize when fed to growing pigs. Four maize varieties (LS1, LS2, LS3 and LS4) were hand-harvested from the same growing area in China in early October of 2012. The samples were sun dried to about 14% moisture content and then stored in the warehouse of the Fengning Pig Experiment Base at China Agricultural University for 0, 3 or 10 months. Twenty-four barrows of about 33 kg body weight were used and allotted to a completely randomised block design with four diets and six replicate pigs per diet. Pigs were individually housed in metabolic crates. The four experimental diets were formulated by mixing 96.8% of each variety of maize with 3.2% vitamins and minerals. A 5-day collection period followed a 7-day diet acclimation period. The results indicated that the DE and ME contents of maize and the apparent total tract digestibility (ATTD) of organic matter (OM), dry matter, gross energy (GE), neutral detergent fibre, acid detergent fibre (ADF), crude protein (CP) and ether extract (EE) were significantly (p < 0.05) influenced by maize variety and storage duration. With an extension of storage duration from 0 to 10 months, the DE and ME of maize and the ATTD of OM, GE, ADF, CP and EE changed in a quadratic manner (p < 0.05), and 3 months of storage exceeded 0 months of storage by 1.84%, 1.43%, 0.31%, 0.32%, 15.37%, 2.11% and 5.02%, respectively. The DE, ME of maize and the ATTD of OM, GE, ADF, CP and EE decreased by 3.67%, 6.00%, 0.97%, 1.40%, 30.54%, 3.92% and 20.93%, respectively, at 10 months of storage compared to 3 months of storage. No interaction was observed between maize variety and storage duration in DE and ME contents in maize. In conclusion, under the conditions of this study, most of the nutrient digestibility and the DE and ME contents of maize increased from 0 to 3 months and decreased from 3 to 10 months.  相似文献   

5.
The aim of the present experiment was to determine if a niacin supplementation of 6 g/d to lactating dairy cow diets can compensate negative effects of a rumen nitrogen balance (RNB) deficit. A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows were successively assigned to one of three diets consisting of 10 kg maize silage (dry matter [DM] basis) and7 kg DM concentrate: Diet RNB– (n = 6) with energy and utilisable crude protein at the duodenum (uCP) according to the average requirement of the animals but with a negative RNB (–0.41 g N/MJ metabolisable energy [ME]); Diet RNB0 (n = 7) with energy, uCP and a RNB (0.08 g N/MJ ME) according to the average requirement of the animals and, finally, Diet NA (n = 5), which was the same diet as RNB–, but supplemented with 6 g niacin/d. Samples of milk were taken on two consecutive days, blood samples were taken on one day pre- and post-feeding and faeces and urine were collected completely over five consecutive days. The negative RNB reduced milk and blood urea content and apparent total tract digestibility of DM, organic matter (OM) and neutral detergent fibre (NDF). Also N excretion with urine, the total N excreted with urine and faeces and the N balance were reduced when the RNB was negative. Supplementation of niacin elevated plasma glucose concentration after feeding and the N balance increased. Supplementing the diet with a negative RNB with niacin led to a more efficient use of dietary N thereby avoiding the negative effects of the negative RNB on the digestibility of DM, OM and NDF.  相似文献   

6.
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25–0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20–50 mg m?2) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m?2. The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.  相似文献   

7.
Myall Lakes has experienced algal blooms in recent years which threaten water quality. Biomarkers, benthic fluxes measured with chambers, and pore water metabolites were used to identify the nature and reactivity of organic matter (OM) in the sediments of Bombah Broadwater (BB), and the processes controlling sediment-nutrient release into the overlying waters. The OM in the sediments was principally from algal sources although terrestrial OM was found near the Myall River. Terrestrial faecal matter was identified in muddy sediments and was probably sourced via runoff from farm lands. The reactive OM which released nutrients into the overlying waters was from diatoms, dinoflagellates and probably cyanobacteria. Microcystis filaments were observed in surface sediments. OM degradation rates varied between 5.3 and 47.1 mmol m?2 day?1 (64–565 mg m?2 day?1), were highest in the muddy sediments and sulphate reduction rates accounted for 20–40% of the OM degraded. Diatoms, being heavy sink rapidly, and are an important vector to transport catchment N and P to sites of denitrification and P-trapping in the sediments. Denitrification rates (mean ~4 mmol N m?2 day?1), up to 7 mmol N m?2 day?1 (105 mg N m?2 day?1) were measured, and denitrification efficiencies were highest (mean = 86 ± 4%) in the sandy sediments (~20% of the area of BB), but lower in the muddy sediments (mean = 63 ± 15%). These differences probably result from higher OM loads and anaerobic respiration in muddy sediments. Most DIP (>70%) from OM degradation was not released into overlying waters but remained trapped in surface sediments. Biophysical (advective) processes were responsible for the measured metabolite (O2, CO2, DSi, DIN and DIP) fluxes across the sediment–water interface.  相似文献   

8.
High soil P concentrations hinder ecological restoration of biological communities typical for nutrient-poor soils. Phosphorus mining, i.e., growing crops with fertilization other than P, might reduce soil P concentrations. However, crop species have different P-uptake rates and can affect subsequent P removal in crop rotation, both of which may also vary with soil P concentration. In a pot experiment with three soil-P-levels (High-P: 125–155 mg POlsen/kg; Mid-P: 51–70 mg POlsen/kg; Low-P: 6–21 mg POlsen/kg), we measured how much P was removed by five crop species (buckwheat, maize, sunflower, flax, and triticale). Total P removal decreased with soil-P-level and depended upon crop identity. Buckwheat and maize removed most P from High-P and Mid-P soils and triticale removed less P than buckwheat, maize, and sunflower at every soil-P-level. The difference in P removal between crops was, however, almost absent in Low-P soils. Absolute and relative P removal with seeds depended upon crop species and, for maize and triticale, also upon soil-P-level. None of the previously grown crop species significantly affected P removal by the follow-up crop (perennial ryegrass). We can conclude that for maximizing P removal, buckwheat or maize could be grown.  相似文献   

9.
The aim of the experiment was to determine the impact of heat stress on nutrient digestibility and nitrogen balance in sheep fed silages differing in fibre quality. The digestibility trial was conducted at three different ambient temperatures (15°C, 25°C and 35°C for 24 h/d). The tested brown-midrib maize (Bm) silage had a higher nutrient digestibility, except for ether extract (EE) and a higher metabolisable energy (ME) content than the control maize (Con) silage. Nitrogen (N) excretion with faeces was higher but N excretion with urine was lower for sheep fed Bm silage, subsequently N balance did not differ between the two silages. Temperature had no effect on nutrient digestibility, except for crude protein (CP), but N excretion with urine was lower at elevated temperatures. A diet by temperature interaction was found for dry matter (DM) and organic matter (OM) digestibility. When the ambient temperature increased from 15°C to 25°C, the DM and OM digestibility increased in animals fed Con silage, but decreased in animals fed Bm silage. Concomitantly, ME estimated from digestible nutrients was higher for Bm than for Con at 15°C, but no differences were found at 25°C and 35°C. Effects of diet by temperature interaction, furthermore, were observed for EE and CP digestibility. Therefore, forage quality has to be considered when feeding heat-stressed animals.  相似文献   

10.
Maize, sunflower, flax, and spinach differed in the accumulation of Cd when grown on a Cd contaminated soil. This was mainly due to the different Cd net influx, In , that varied among species by a factor of up to 30. The objective of this study was to find possible reasons for the different Cd In by using a mechanistic model. After 14 days of Cd uptake the model calculated only a small Cd depletion at the root surface, e.g. from 0.22 μmol L?1down to 0.19 μmol L?1for maize and from 0.48 μmol L?1down to 0.35 μmol L?1for spinach. Even so the model always overestimated the Cd In , for spinach by a factor of 1.5 and for maize by a factor of 10. Only simulating a decrease of CLi or the root absorbing power, α, by 40% to 90% gave an agreement of calculated and measured In . This may be interpreted as that about 40% in the case of spinach and 90% in the case of maize of the Cd in soil solution were not accessible for plant uptake. The high sensitivity to α also shows that not the Cd transport to the root but α was limiting the step for Cd uptake.  相似文献   

11.
A sequencing batch reactor (SBR) was used to test the nitrogen removal performance of anaerobic ammonium oxidation (ANAMMOX) in presence of organic matter. Mesophilic operation (30 ± 0.5 °C) was performed with influent pH 7.5. The results showed, independent of organic matter species, ANAMMOX reaction was promoted when COD was lower than 80 mg/L. However, specific ANAMMOX activity decreased with increasing organic matter content. Ammonium removal efficiency decreased to 80% when COD of sodium succinate, sodium potassium tartrate, peptone and lactose were 192.5, 210, 225 and 325 mg/L, respectively. The stoichiometry ratio resulting from different OM differed largely and R1 could be as an indicator for OM inhibition. When COD concentration was 240 mg/L, the loss of SAA resulting from lactose, peptone, sodium potassium tartrate and sodium succinate were 28, 36, 50 and 55%, respectively. Sodium succinate had the highest inhibitory effect on SAA. When ANAMMOX process was used to treat wastewater containing OM, the modified Logistic model could be employed to predict the NREmax.  相似文献   

12.
Since maize silage is an important forage in cattle nutrition, it is important to know its nutritive value. Much effort is put into breeding maize, and several new varieties are introduced on the market every year. This requires periodical analyses of the nutritive value of current maize varieties for the formulation of cattle rations. The aim of this study was to examine the nutritive value of whole crop maize silage (WCMS) from nine maize varieties in 3 consecutive years. For the analysis of nutrient composition and ruminal degradability of organic matter (OM), crude protein (CP), neutral detergent fibre (aNDFom) and non-fibre carbohydrates (NFC), varieties were harvested at three harvest dates (50%, 55% and 60% dry matter content in ear). Due to capacity limitations, the digestibility of WCMS was tested only for the middle harvest date. The CP and acid detergent fibre (ADFom) content was affected (p < 0.05) while aNDFom and NFC content was not influenced by variety. With advancing maturity, CP, aNDFom and ADFom content declined while NFC content increased. Variety influenced effective ruminal degradability (ED) of nutrients, except for CP. The ED of all examined nutrients decreased as maturity advanced from first to third harvest date. Digestibility of OM, ADFom and NFC was significantly and digestibility of aNDFom was tendentially (p = 0.064) influenced by variety. Additionally, an effect of year and a harvest date × year interaction was found for almost all examined parameters. In conclusion, variety, harvest date and year influence the nutritive value of WCMS. A comparison with earlier studies shows that current varieties have a higher fibre digestibility and a slower-ripening stover compared to older varieties.  相似文献   

13.
Lipid and fatty acid compositions were determined for chloroplast envelope membranes isolated from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) leaves. The lipid composition was similar in sunflower, spinach, and undifferentiated maize chloroplast envelope membranes and different in maize mesophyll chloroplast envelope membranes. The predominant lipid constituents in all envelope membranes were monogalactosyldiglyceride (27 to 46%), digalactosyldiglyceride (18 to 33%), and phosphatidylcholine (7 to 30%). The fatty acid composition was also similar in sunflower and spinach chloroplast envelope membranes in comparison to those from maize. The major acyl fatty acids of the chloroplast envelope membrane were palmitic (C16:0, 41 and 36%) and linolenic (C18:3, 29 and 40%) acids for spinach and sunflower; palmitic (77%) and stearic (C18:0, 12%) acids for young maize; and palmitic (61%), stearic (14%), and linolenic (13%) acids for mature maize. The differences in lipid and acyl fatty acid compositions among these plants which vary in their rates of net photosynthesis were largely quantitative rather than qualitative.  相似文献   

14.
The impact of rising atmospheric CO2 on crop productivity and quality is very important for global food and nutritional security under the changing climatic scenario. A study was conducted to investigate the effect of elevated CO2 on seed oil quality and yield in a sunflower hybrid DRSH 1 and variety DRSF 113, raised inside open top chambers and exposed to elevated CO2 (550 ± 50 µl l?1). Elevated CO2 exposure significantly influenced the rate of photosynthesis, seed yield and the quality traits in both hybrid and variety. Plants grown under elevated CO2 concentration showed 61–68 % gain in biomass and 35–46 % increase in seed yield of both the genotypes, but mineral nutrient and protein concentration decreased in the seeds. The reduction in seed protein was up to 13 %, while macro and micronutrients decreased drastically (up to 43 % Na in hybrid seeds) under elevated CO2 treatment. However, oil content increased significantly in DRSF 113 (15 %). Carbohydrate seed reserves increased with similar magnitudes in both the genotypes under elevated CO2 treatment (13 %). Fatty acid composition in seed oil contained higher proportion of unsaturated fatty acids (oleic and linoleic acid) under elevated CO2 treatment, which is a desirable change in oil quality for human consumption. These findings conclude that rising atmospheric CO2 in changing future climate can enhance biomass production and seed yield in sunflower and alter their seed oil quality in terms of increased concentration of unsaturated fatty acids compared with saturated fatty acids and lower seed proteins and mineral nutrients.  相似文献   

15.
Current investigation has for the first time utilized Trichocomaceae fungi i.e. Aspergillus niger, Aspergillus terreus, Aspergillus flavus and Pencillium i.e. Penicillium chrysogenum for augmenting the phytoremediation potential of bioenergy crops wheat (Zea mays) and ? sunflower (Helianthus annuus). Phytoremediation was done for mitigation of heavy metals i.e. Chromium (Cr), Copper (Cu), Lead (Pb) and Cadmium (Cd) from contaminated soils of agricultural significance. Phytoremediant crops were inoculated with fungal cultures by three methods i.e. mixing method, seed inoculation method and layering spreading method. Maize and sunflower plants after fungal inoculation were harvested after 60 days of germination. The estimation of % biomass and bioenergy of maize and sunflower plants was done. Results were indicative of the good phytoremediation potential of roots and shoots for uptake of heavy metals i.e. CrAspergillus niger, Aspergillus terreus and Aspergillus flavus by fungal inoculation methods. Sunflower and fungal inoculum of Aspergillus flavus and Penicillium chrysogenum extracted significant quantity of metals from the soil. By three fungal inoculation methods, range of % production of biomass was 84?87% and sunflower plants dry biomass 9.6 g yielded 0.16% of oil. Obtained results are have favored the use of fungal inoculation as an effective mode for phytoremediation augmentation of maize and sunflower. Furthermore, current work also signifies the sustainable conversion of bioenergy crops to biofuel production in a cost effective mode.  相似文献   

16.
Understanding the influence of organic or inorganic nutrient management on soil biology and biochemistry during crop growth may help to develop more sustainable fertilization strategies. Hence, the biological variables including soil organic carbon (SOC), microbial biomass carbon (MBC), six cultivable microbial communities, five hydrolytic enzymes activity and soil respiratory indices from a long-term fertility experiment field (>100 years) were assessed at different growth stages of maize. The samples were taken from four long-term treatments viz., control (no fertilization), balanced inorganic fertilizers (IC), organic amendments (OM) and integrated nutrient management (INM, organic manure plus chemical fertilizers) at five different stages of maize cropping (S1, pre-cropping; S2, five days after sowing; S3, vegetative; S4, flowering; S5, after harvesting). Responses of most of the assessed parameters to organic fertilization (OM and INM) were significantly higher than those from inorganically managed and control soils. There was significant difference in SOC due to long-term nutrient managements (OM > INM > IC > control) but not due to growth stages of maize. MBC was also higher in OM and INM compared to IC and control and found significantly different at growth stages of maize. Values of microbial counts and assessed enzyme activities were highest at vegetative stage of maize following a declined trend at later stages. The respiration studies indicate a difference between the responses of substrate induced respiration rate (SIR) and metabolic quotient (qCO2). SIR was more significantly influenced by long-term nutrient managements than crop stages, while qCO2 was by early stage of maize growth (S2) alone. The principal component analysis (PCA) identifies MBC, qCO2, SIR, dehydrogenase, phosphatase and aryl sulphatase and counts of Actinobacteria and diazotrophs as major drivers for the variability among the samples. PCA discriminated OM and INM samples from IC and control and vegetative stage of maize from other stages. The interaction effects of long-term nutrient managements and maize growth stages were found significant to MBC, counts of Actinobacteria and diazotrophs and activities of dehydrogenase, acid phosphatase and aryl sulphatase. However, the resilience of semi-arid tropical soil, independent of long-term nutrient management adoptions, was not affected due to maize growth. The present study thus provides some reliable biological indicators to monitor the semi-arid tropical soils, those influenced by nutrient managements.  相似文献   

17.
Several in situ studies have been conducted on maize silages to determine the effect of individual factors such as maturity stage, chop length and ensiling of maize crop on the rumen degradation but the information on the relationship between chemical composition and in situ rumen degradation characteristics remains scarce. The objectives of this study were to determine and describe relationships between the chemical composition and the rumen degradation characteristics of dry matter (DM), organic matter (OM), CP, starch and aNDFom (NDF assayed with a heat stable amylase and expressed exclusive of residual ash) of maize silages. In all, 75 maize silage samples were selected, with a broad range in chemical composition and quality parameters. The samples were incubated in the rumen for 2, 4, 8, 16, 32, 72 and 336 h, using the nylon bag technique. Large range was found in the rumen degradable fractions of DM, OM, CP, starch and aNDFom because of the broad range in chemical composition and quality parameters. The new database with in situ rumen degradation characteristics of DM, OM, CP, starch and aNDFom of the maize silages was obtained under uniform experimental conditions; same cows, same incubation protocol and same chemical analysis procedures. Regression equations were developed with significant predictors (P<0.05) describing moderate and weak relationships between the chemical composition and the washout fraction, rumen undegradable fraction, potentially rumen degradable fraction, fractional degradation rate and effective rumen degradable fraction of DM, OM, CP, starch and aNDFom.  相似文献   

18.
The wetlands on the Qinghai-Tibet Plateau are experiencing serious degradation, with more than 90,000 hectares of marshland converted to wet meadow or meadow after 40 years of drainage. However, little is known about the effects of wetland conversion on soil C stocks and the quality of soil organic carbon (SOC) (defined by the proportion of labile versus more resistant organic carbon compounds). SOC, microbial biomass carbon, light fraction organic carbon (LFOC), dissolved organic carbon, and the chemical composition of SOC in the soil surface layer (0–10 cm), were investigated along a wetland degradation gradient (marsh, wet meadow, and meadow). Wetland degradation caused a 16 % reduction in the carbon stocks from marsh (178.7 ± 15.2 kg C m?2) to wet meadow (150.6 ± 21.5 kg C m?2), and a 32 % reduction in C stocks of the 0–10 cm soil layer from marsh to meadow (122.2 ± 2.6 kg C m?2). Wetland degradation also led to a significant reduction in SOC quality, represented by the lability of the carbon pool as determined by a density fractionation method (L LFOC), and a significant increase in the stability of the carbon pool as reflected by the alkyl-C:O-alkyl-C ratio. 13C NMR spectroscopy showed that the labile form of C (O-alkyl-C) declined significantly after wetland degradation. These results assist in explaining the transformation of organic C in these plateau wetland soils and suggest that wetland degradation not only caused SOC loss, but also decreased the quality of the SOC of the surface soil.  相似文献   

19.
The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.  相似文献   

20.
Collagen glycosaminoglycan (CG) scaffolds have been clinically approved as an application for skin regeneration. The goal of this study has been to examine whether a CG scaffold is a suitable biomaterial for generating human bone tissue. Specifically, we have asked the following questions: (1) can the scaffold support human osteoblast growth and differentiation and (2) how might recombinant human transforming growth factor-beta (TGF-β1) enhance long-term in vitro bone formation? We show human osteoblast attachment, infiltration and uniform distribution throughout the construct, reaching the centre within 14 days of seeding. We have identified the fully differentiated osteoblast phenotype categorised by the temporal expression of alkaline phosphatase, collagen type 1, osteonectin, bone sialo protein, biglycan and osteocalcin. Mineralised bone formation has been identified at 35 days post-seeding by using von Kossa and Alizarin S Red staining. Both gene expression and mineral staining suggest the benefit of introducing an initial high treatment of TGF-β1 (10 ng/ml) followed by a low continuous treatment (0.2 ng/ml) to enhance human osteogenesis on the scaffold. Osteogenesis coincides with a reduction in scaffold size and shape (up to 70% that of original). A notable finding is core degradation at the centre of the tissue-engineered construct after 49 days of culture. This is not observed at earlier time points. Therefore, a maximum of 35 days in culture is appropriate for in vitro studies of these scaffolds. We conclude that the CG scaffold shows excellent potential as a biomaterial for human bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号