首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.  相似文献   

3.
Recognition of the tumour suppressive capacity of the Promyelocytic Leukemia protein (PML) has emerged beyond its identification through APL, to a broad spectrum of tumors. This ability has chiefly been linked to its role as a core component of dynamic structures termed PML Nuclear Bodies (PML-NBs). In response to a variety of stresses, key factors and their molecular modifiers are recruited to PML-NBs, where activating modifications are facilitated, leading to a cellular stress response. PML was also found to perform anti-tumourigenic functions through cytoplasmic activities. Surprisingly, important recent research defined growth promoting capabilities of PML, which significantly challenges the notion of a ‘classic’ tumour suppressor. Through metabolic reprogramming, PML can afford a selective advantage for tumor cells in certain settings. The multiple forms in which PML exists are the likely explanation of this functional diversity. This behavioral ambiguity however raises a significant challenge to the design of strategies to therapeutically target PML. In this review we discuss this change of paradigm in the PML field and its ramifications, particularly for tailoring cancer therapies.  相似文献   

4.
Poly (ADP‐ribose) polymerase (PARP) inhibitors have provided great clinical benefits to ovarian cancer patients. To date, three PARP inhibitors, namely, olaparib, rucaparib and niraparib have been approved for the treatment of ovarian cancer in the United States. Homologous recombination deficiency (HRD) and platinum sensitivity are prospective biomarkers for predicting the response to PARP inhibitors in ovarian cancers. Preclinical data have focused on identifying the gene aberrations that might generate HRD and induce sensitivity to PARP inhibitors in vitro in cancer cell lines or in vivo in patient‐derived xenografts. Clinical trials have focused on genomic scar analysis to identify biomarkers for predicting the response to PARP inhibitors. Additionally, researchers have aimed to investigate mechanisms of resistance to PARP inhibitors and strategies to overcome this resistance. Combining PARP inhibitors with HR pathway inhibitors to extend the utility of PARP inhibitors to BRCA‐proficient tumours is increasingly foreseeable. Identifying the population of patients with the greatest potential benefit from PARP inhibitor therapy and the circumstances under which patients are no longer suited for PARP inhibitor therapy are important. Further studies are required in order to propose better strategies for overcoming resistance to PARP inhibitor therapy in ovarian cancers.  相似文献   

5.
6.
Epithelial-mesenchymal transition(EMT) has been linked with aggressive tumor biology and therapy resistance. It plays central role not only in the generation of cancer stem cells(CSCs) but also direct them across the multiple organ systems to promote tumor recurrence and metastasis. CSCs are reported to express stem cell genes as well as specific cell surfacemarkers and allow aberrant differentiation of progenies.It facilitates cancer cells to leave primary tumor, acquire migratory characteristics, grow into new environment and develop radio-chemo-resistance. Based on the current information, present review discusses and summarizes the recent advancements on the molecular mechanisms that derive epithelial plasticity and its major role in generating a subset of tumor cells with stemness properties and pathophysiological spread of tumor. This paper further highlights the critical need to examine the regulation of EMT and CSC pathways in identifying the novel probable therapeutic targets.These improved therapeutic strategies based on the co-administration of inhibitors of EMT, CSCs as well as differentiated tumor cells may provide improved antineoplastic response with no tumor relapse.  相似文献   

7.
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.  相似文献   

8.
9.
MG Baxter 《Neuron》2012,75(1):8-10
Medial temporal lobe (MTL) structures may constitute a representational hierarchy, rather than a dedicated system for memory. Barense et al. (2012) show that intact memory for object features can interfere with perception of complex objects in individuals with MTL amnesia.  相似文献   

10.
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.  相似文献   

11.
12.
13.
Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance.  相似文献   

14.
Autophagy is considered an indispensable process that scavenges toxins, recycles complex macromolecules, and sustains the essential cellular functions. In addition to its housekeeping role, autophagy plays a substantial role in many pathophysiological processes such as cancer. Certainly, it adapts cancer cells to thrive in the stress conditions such as hypoxia and starvation. Cancer cells indeed have also evolved by exploiting the autophagy process to fulfill energy requirements through the production of metabolic fuel sources and fundamentally altered metabolic pathways. Occasionally autophagy as a foe impedes tumorigenesis and promotes cell death. The complex role of autophagy in cancer makes it a potent therapeutic target and has been actively tested in clinical trials. Moreover, the versatility of autophagy has opened new avenues of effective combinatorial therapeutic strategies. Thereby, it is imperative to comprehend the specificity of autophagy in cancer-metabolism. This review summarizes the recent research and conceptual framework on the regulation of autophagy by various metabolic pathways, enzymes, and their cross-talk in the cancer milieu, including the implementation of altered metabolism and autophagy in clinically approved and experimental therapeutics.  相似文献   

15.
Rectal cancer represents about 30% of colorectal cancers, being around 50% locally advanced at presentation. Chemoradiation (CRT) followed by total mesorectal excision is the standard of care for these locally advanced stages. However, it is not free of adverse effects and toxicity and the complete pathologic response rate is between 10% and 30%. This makes it extremely important to define factors that can predict response to this therapy. Focal adhesion kinase (FAK) expression has been correlated with worse prognosis in several tumours and its possible involvement in cancer radio‐ and chemosensitivity has been suggested; however, its role in rectal cancer has not been analysed yet. To analyse the association of FAK expression with tumour response to CRT in locally advanced rectal cancer. This study includes 73 patients with locally advanced rectal cancer receiving standard neoadjuvant CRT followed by total mesorectal excision. Focal adhesion kinase protein levels were immunohistochemically analysed in the pre‐treatment biopsies of these patients and correlated with tumour response to CRT and patients survival. Low FAK expression was significantly correlated with local and distant recurrence (P = 0.013). Low FAK expression was found to be a predictive marker of tumour response to neoadjuvant therapy (P = 0.007) and patients whose tumours did not express FAK showed a strong association with lower disease‐free survival (P = 0.01). Focal adhesion kinase expression predicts neoadjuvant CRT response in rectal cancer patients and it is a clinically relevant risk factor for local and distant recurrence.  相似文献   

16.
17.
Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, “fueling” oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the “root cause” of cancer, but rather it may provide the necessary clues to preventing chemoresistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for overcoming drug resistance could be applicable to many different types of cancer.Key words: drug resistance, tamoxifen, dasatinib, tumor stroma, microenvironment, Warburg effect, aerobic glycolysis, mitochondrial oxidative phosphorylation, glucose uptake, oxidative stress, reactive oxygen species (ROS), cancer-associated fibroblasts  相似文献   

18.
Li XH  Li C  Xiao ZQ 《Journal of Proteomics》2011,74(12):2642-2649
A major problem in chemotherapy of cancer patients is drug resistance as well as unpredictable response to treatment. During chemotherapy, multiple alterations of genetics and epigenetics that contribute to chemoresistance take place, eventually impacting on disease outcome. A more complex picture of the mechanisms of drug resistance is now emerging through application of high-throughput proteomics technology. We have entered an exciting time where proteomics are being applied to characterize the mechanisms of drug resistance, and to identify biomarkers for predicting response to chemotherapy, thereby leading to personalized therapeutic strategies of cancer patients. Comparative proteomics have identified a large number of differentially expressed proteins associated with chemoresistance. Although roles and mechanisms of such proteins in chemoresistance need to be further proved, at least some of them may be potential biomarkers for predicting chemotherapeutic response. Herein, we review the recent advancements on proteomic investigation of chemoresistance in human cancer, and emphasize putative biomarkers for predicting chemotherapeutic response and possible mechanisms of chemoresistance identified through proteomic approaches. Suggested avenues for future work are discussed.  相似文献   

19.
20.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号