首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As human impacts and demands for ocean space increase (fisheries, aquaculture, marine reserves, renewable energy), identification of marine habitats hosting sensitive biological assemblages has become a priority. Epifaunal invertebrates, especially the structure-forming species, are an increasing conservation concern as many traditional (bottom-contact fishing) and novel (marine renewable energy) ocean uses have the potential to displace or otherwise impact these slow-growing organisms. The differences in mega-invertebrate species assemblages between high-relief rocks and low-relief sediments are well documented and likely hold for most marine environments. In anticipation of potential development of marine renewable energy faculties off Oregon and Washington (USA), a survey of the benthic invertebrate assemblages and habitats was conducted on three rocky reefs on the continental shelf of the Pacific Northwest, using video footage collected by remotely operated vehicle, to more finely characterize these assemblage–habitat associations. Benthic assemblages appeared to first group by depth (50–80 vs. 100–120 m), then by relief (consolidated rocks vs. unconsolidated rocks and soft sediments). Consolidated rocks were characterized at each site by a combination of various sponges, gorgonians, sea anemones and echinoderms; unconsolidated rocks were characterized at Grays Bank by sea anemones and burrowing brittle stars, and at Bandon-Arago by sponges and echinoderms; soft sediments were characterized at Grays Bank and Siltcoos Reef by sea whips and burrowing brittle stars, as well as pink shrimps and sea stars at Siltcoos Reef, and at Bandon-Arago by sponges, gorgonians and echinoderms. The results of this study will help classify and map the seafloor in a way that represents benthic habitats reflective of biological species assemblage distributions, rather than solely geological features, and support conservation and management planning.  相似文献   

2.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

3.
Marine biodiversity: patterns, threats and conservation needs   总被引:15,自引:0,他引:15  
Marine biodiversity is higher in benthic rather than pelagic systems, and in coasts rather than the open ocean since there is a greater range of habitats near the coast. The highest species diversity occurs in the Indonesian archipelago and decreases radially from there. The terrestrial pattern of increasing diversity from poles to tropics occurs from the Arctic to the tropics but does not seem to occur in the southern hemisphere where diversity is high at high latitides. Losses of marine diversity are highest in coastal areas largely as a result of conflicting uses of coastal habitats. The best way to conserve marine diversity is to conserve habitat and landscape diversity in the coastal area. Marine protected areas are only a part of the conservation strategy needed. It is suggested that a framework for coastal conservation is integrated coastal area management where one of the primary goals is sustainable use of coastal biodiversity.  相似文献   

4.
We studied day‐night patterns in fish diversity in natural, gravel‐sand stretches and boulder covered rip‐rap habitats in the littoral zone of the River Danube. Sample‐based rarefaction indicated marked differences in species richness between day and night, and smaller differences between habitats for both day and night. Whereas, individual‐based rarefaction indicated no such substantial differences in species richness. However, distinct fish assemblages were found based on relative abundance data, and species of great conservation concern tended to link to natural habitats. The diversity of biological traits/attributes were generally higher in rip‐rap habitats. The differences in fish assemblage characteristics between habitats revealed the importance of gravel‐sand habitats in maintaining natural assemblages and that rip‐rap sections increase compositional beta diversity at the mesohabitat scale. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present a study of benthic foraminiferal assemblages from an Ypresian–Lutetian distal submarine fan system in the lower bathyal Gorrondatxe section (Basque-Cantabrian Basin, northern Spain). The objective of our study is to analyze the benthic foraminiferal distribution patterns and their response to sedimentary disturbance and related factors.Assemblages contain a high percentage of allochthonous taxa, such as asterigerinids and other shallow water taxa, which were transported downslope by turbidity currents.Detailed quantitative analyses, supported by R-mode cluster and Detrended Correspondence Analyses (after removing allochthonous taxa from the foraminiferal counts) allowed us to identify 6 assemblages that are divided into two groups related to the turbidite content in the Gorrondatxe section. Assemblages 1, characteristic of the turbidite-poor intervals with low sedimentary disturbance, include assemblage 1a (with highly diverse common middle–lower bathyal calcareous taxa) assemblage 1b (with common agglutinated taxa, mainly trochamminids), and assemblage 1c (characterized by calcareous taxa that are also common in the turbidite-rich interval).Assemblages 2, characterized by a high dominance, prevail in the turbidite-rich interval, and include assemblage 2a (characterized by the dominance of infaunal bolivinids and epifaunal cibicids), assemblage 2b (typified by moderate to low diversity and dominated by deep-infaunal Globobulimina species), and assemblage 2c (typified by very abundant suspension-feeding astrorhizids). The high abundance of bolivinids and Globobulimina species may be related to an enhanced input of low-quality organic matter transported by turbidity currents to the seafloor, representing different stages of recolonisation after disturbance and different energy regimes. High current activity was probably responsible for the abundance of cibicids, while moderate to low diverse and high dominance assemblages characterize the recolonisation of the substrate after disturbance.We conclude that sedimentary disturbance and other related factors such as current activity, resuspension of sediments at the seafloor, and supply of organic matter (and its quality) played an important role in the distribution of benthic foraminifera in the Gorrondatxe section. The identification of allochthonous taxa emerges as an essential aspect of the study of environments with sedimentary disturbance.  相似文献   

6.
Inshore marine seascapes support a diversity of interconnected habitats and are an important focus for biodiversity conservation. This study examines the importance of habitat attributes to fish assemblages across a mosaic of inshore habitats: coral reefs, rocky reefs, macroalgae beds and sand/rubble beds. Fishes and benthic habitats were surveyed at 34 sites around continental islands of the central Great Barrier Reef using baited remote underwater video stations (BRUVS). Species richness was influenced foremost by habitat type and also by structural complexity within habitat types. The most speciose assemblages occurred in coral and rocky reef habitats with high structural complexity, provided by the presence of coral bommies/overhangs, boulders and rock crevices. Nonetheless, macroalgae and sand/rubble beds also supported unique species, and therefore contributed to the overall richness of fish assemblages in the seascape. Most trophic groups had positive associations with complexity, which was the most important predictor for abundance of piscivorous fishes and mobile planktivores. There was significant differentiation of fish assemblages among habitats, with the notable exception of coral and rocky reefs. Species assemblages overlapped substantially between coral and rocky reefs, which had 60% common species, despite coral cover being lower on rocky reefs. This suggests that, for many species, rocky and coral substrates can provide equivalent habitat structure, emphasizing the importance of complexity in providing habitat refuges, and highlighting the contribution of rocky reefs to habitat provision within tropical seascapes. The results of this study support an emerging recognition of the collective value of habitat mosaics in inshore marine ecosystems.  相似文献   

7.
The nature of the substratum is a fundamental factor determining the types of organisms and communities found in many terrestrial and benthic habitats. The extent to which this is true in extreme environments was investigated using bryozoan assemblages as model organisms in an Arctic fjord (Kongsfjorden 79°N, 12°E) in summer 2001 using SCUBA. Twenty-seven substrate samples of 0.25 m2 were taken at 10 m depth from the inner glacial basin to the mouth of the fjord. Multivariate analyses revealed four different bryozoan assemblages. The sea floor of the inner basin of Kongsfjorden near the glacial fronts was characterized by low diversity and dominance of the ctenostome species Alcyonidium disciforme Smitt. Highest richness and diversity occurred on rock substratum with mean size >10 cm2, on which the most common species was the pioneer Harmeria scutulata Busk (abundance: 15%). On smaller rocks with mean size <2 cm2, the runner-like pioneer species Electra arctica Borg comprised most individuals of the assemblage (98%). Yet another pioneer, Celleporella hyalina Linnaeus, was the most abundant species (49%) on substratum dominated by algae. Thus, in each habitat type, pioneers dominated but different species and to different extents. There was much variation in species composition and abundance within assemblages of heterogeneous habitats, and this study emphasizes the importance of microhabitats and physical conditions. Heterogeneity was evident at scales of <1 m.  相似文献   

8.
Aim To investigate the potential impacts of climate change on stream fish assemblages in terms of species and biological trait diversity, composition and similarity. Location One‐thousand one‐hundred and ten stream sections in France. Methods We predicted the future potential distribution of 35 common stream fish species facing changes in temperature and precipitation regime. Seven different species distribution models were applied and a consensus forecast was produced to limit uncertainty between single‐models. The potential impacts of climate change on fish assemblages were assessed using both species and biological trait approaches. We then addressed the spatial distribution of potential impacts along the upstream–downstream gradient. Results Overall, climate change was predicted to result in an increase in species and trait diversity. Species and trait composition of the fish assemblages were also projected to be highly modified. Changes in assemblages’ diversity and composition differed strongly along the upstream–downstream gradient, with upstream and midstream assemblages more modified than downstream assemblages. We also predicted a global increase in species and trait similarity between pairwise assemblages indicating a future species and trait homogenization of fish assemblages. Nevertheless, we found that upstream assemblages would differentiate, whereas midstream and downstream assemblages would homogenize. Our results suggested that colonization could be the main driver of the predicted homogenization, while local extinctions could result in assemblage differentiation. Main conclusions This study demonstrated that climate change could lead to contrasted impacts on fish assemblage structure and diversity depending on the position along the upstream–downstream gradient. These results could have important implications in terms of ecosystem monitoring as they could be useful in establishing areas that would need conservation prioritization.  相似文献   

9.
Paleontological and biostratigraphical studies on carbonate platform succession from southwest Iran documented a great diversity of shallow-water benthic foraminifera during the Oligocene–Miocene. Larger foraminifera are the main means for the stratigraphic zonation of carbonate sediments. The distributions of larger benthic foraminifera in two outcrop sections (Abolhayat and Lali) in the Zagros Basin, Iran, are used to determine the age of the Asmari Formation. Four assemblage zones have been recognized by distribution of the larger benthic foraminifera in the study areas. Assemblage 3 (Aquitanian age) and 4 (Burdigalian age) have not been recognized in the Abolhayat section (Fars area), due to sea-level fall. The end Chattian sea-level fall restricted marine deposition in the Abolhayat section and Asmari Formation replaced laterally by the Gachsaran Formation. This suggests that the Miocene part of the formation as recognized in the Lali section (Khuzestan area) of the Zagros foreland basin is not present in the Abolhayat outcrop. The distribution of the Oligocene larger benthic foraminifera indicates that shallow marine carbonate sediments of the Asmari Formation at the study areas have been deposited in the photic zone of tropical to subtropical oceans. Based on analysis of larger benthic foraminiferal assemblages and microfacies features, three major depositional environments are identified. These include inner shelf, middle shelf and outer shelf. The inner shelf facies is characterized by wackestone–packstone, dominated by various taxa of imperforate foraminifera. The middle shelf is represented by packstone–grainstone to floatstone with a diverse assemblage of larger foraminifera with perforate wall. Basinwards is dominated by argillaceous wackestone characterized by planktonic foraminifera and large and flat nummulitidae and lepidocyclinidae. Planktonic foraminifera wackestone is the dominant facies in the outer shelf.  相似文献   

10.
Fouling communities on artificial marine structures are generally different from benthic communities in natural rocky habitats. However, they may also differ among different types of artificial structures. Two artificial structures in direct contact with arriving vessels were compared: floating pontoons within recreational marinas, and sea-walls within commercial harbours. Natural rocky habitats were used as a reference, and the genus Eudendrium (Cnidaria, Hydrozoa) was chosen as a bioindicator. The assemblages were different among the three types of habitat studied, with different species characterising each habitat. The probability of finding an invasive Eudendrium species was significantly higher on pontoons. Diversity was the lowest on pontoons, but it was not significantly different between sea-walls and natural rocks. In general, a barrier to the spread of exotic species exists between harbours and natural rocky habitats. Floating pontoons seem to be a less suitable habitat for native fauna and a key element in marine biological invasions.  相似文献   

11.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

12.
Marine habitat mapping is necessary to comply with European legislation (92/43/EEC, 79/409/EEC and 2001/60/EEC), with international obligations to organizations such as ICES and with agreements such as the OSPAR Convention. Clearly defined habitats are needed before conservation and management practices can be implemented. The BIOM?R, SWISS and HABMAP projects have used sediment particle size, organic matter, organic carbon and nitrogen along with benthic macrofaunal species and abundance to define habitats in the southern Irish Sea. The sea floor of the southern Irish Sea is predominantly sandy gravel, grading down through sand to mud in the deeper parts of the Celtic Sea and similarly in the shallower northern basin beyond Anglesey. The physical gradient in particle size is correlated with organic content and also with biological communities. Nevertheless, there are marked discrepancies between boundaries defined by the Folk sediment characterization trigon, by the chemical characteristics of the sediments and by biological communities. The validity of using continuous physical and chemical sediment characteristics to more accurately predict categorical biological assemblages was tested with use of stepwise backward elimination Binary Logistic Regression (BLR). This method could be used as a tool to predict biological assemblages where there is a paucity of biological data. It lends support to the idea that benthic habitat mapping will have to take more account of biological structuring and system function. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

13.
Floodplain waterbodies and their biodiversity are increasingly threatened by human activities. Given the limited resources available to protect them, methods to identify the most valuable areas for biodiversity conservation are urgently needed. In this study, we used freshwater fish assemblages in floodplain waterbodies to propose an innovative method for selecting priority areas based on four aspects of their diversity: taxonomic (i.e. according to species classification), functional (i.e. relationship between species and ecosystem processes), natural heritage (i.e. species threat level), and socio-economic (i.e. species interest to anglers and fishermen) diversity. To quantitatively evaluate those aspects, we selected nine indices derived either from metrics computed at the species level and then combined for each assemblage (species rarity, origin, biodiversity conservation concern, functional uniqueness, functional originality, fishing interest), or from metrics directly computed at the assemblage level (species richness, assemblage rarity, diversity of biological traits). Each of these indices belongs to one of the four aspects of diversity. A synthetic index defined as the sum of the standardized aspects of diversity was used to assess the multi-faceted diversity of fish assemblages. We also investigated whether the two main environmental gradients at the catchment (distance from the sea) and at the floodplain (lateral connectivity of the waterbodies) scales influenced the diversity of fish assemblages, and consequently their potential conservation value. Finally, we propose that the floodplain waterbodies that should be conserved as a priority are those located in the downstream part of the catchment and which have a substantial lateral connectivity with the main channel.  相似文献   

14.
Traditional approaches to the study of species persistence in fragmented landscapes generally consider a binary classification of habitat being suitable or unsuitable; however, the range of human‐modified habitats within a region may offer a gradient of habitat suitability (or conservation value) for species. We identified such a gradient by comparing bird assemblages among contrasting land uses (pine plantations of different age, annual crops, clear cuts and cattle pastures) in the Upper Parana Atlantic forest. Bird assemblages and vegetation structure were characterized in an extensive area of 4400 km2 in Argentina and Paraguay during the breeding seasons of 2005–2010. Similarity of bird assemblages between anthropogenic habitats and the native forest and the proportion of forest species increased with vegetation vertical structure, while the proportion of open‐area species decreased. As a consequence, mature tree plantations were the most suitable habitats for forest species and were mainly used by frugivores and bark insectivores. In contrast, open habitats were the least suitable habitat for forest species and were used primarily by insectivores. Human‐created habitats that are structurally complex can be used by a subset of forest species, and may improve functional connectivity and mitigate edge effects. The conservation of large tracks of native forests, however, is critical for the long‐term persistence of the entire bird assemblage, especially for native forest dependent species.  相似文献   

15.
Free-living nematodes are sensitive to most of the disturbances and therefore have ability to reflect direct structural and functional changes in an ecosystem. We studied nematode assemblages of Chilika Lagoon, the largest lagoon of Asia, across spatio-temporal scales in link with environmental variables and evaluated nematode assemblages as a proxy to characterize lagoonal benthic habitat settings. Our results revealed that nematode communities showed significant variation spatially and temporally in terms of mean density (16–854/10 cm2) and mean number of species (7–74). Salinity is the key factor that controls nematode community structure across this lagoon and was strongly supported by statistical analyses. The observed nematode assemblages were further used as a proxy to assign benthic habitats of Chilika into distinct biological, topographical and hydrological settings. This study showed that nematode assemblages could be effectively used for long term ecological monitoring of dynamic sedimentary environment of lagoons globally.  相似文献   

16.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

17.
Understanding how spatial patterning relates to ecological processes is fundamental to define important species–environment associations at broader scales. Analyses targeting habitat structure (i.e. composition and configuration) in terrestrial landscapes are increasing, but similar studies in marine landscapes are still relatively uncommon. In this study, we explored how seascape structure and complexity (determined from significant spatial pattern metrics) influenced summer and autumn fish assemblage composition in 30 seagrass (Zostera marina) meadows along the west coast of Sweden. Species density was not influenced by seascape structure in any season. In contrast, the majority of significant fish assemblage variables were influenced by seascape structure during the summer (i.e. abundance and proportion of juveniles, abundance of Labridae and abundance of occasional shallow‐water visitors) whilst fewer in the autumn (i.e. abundance of occasional shallow‐water visitors and Synganthidae). For instance, less complex seascapes were more suitable for juvenile assemblages in summer, as these seascapes exhibit larger patch sizes of appropriate habitat (e.g. Z. marina) and less edge boundaries providing refuges from predators and food resources. Abundances of migrating fish, such as the sea trout Salmo trutta, also responded positively to a less complex seascape in the summer though perhaps ecological processes, such as prey availability, were additional contributing factors driving this relationship. High complexity seascapes only had a positive influence on the abundance of taxa using multiple habitats (Labridae during the summer). Our study shows that fish assemblages in temperate marine environments are significantly linked to spatial habitat patterning and seascape complexity. This offers valuable insights into species–habitat–seascape linkages, information important for coastal conservation and marine spatial planning.  相似文献   

18.
Fish Assemblages in Different Shallow Water Habitats of the Venice Lagoon   总被引:2,自引:0,他引:2  
The small-sized fish assemblages of the Venice Lagoon were investigated and compared among five shallow subtidal habitats (seagrass beds, sparsely vegetated habitats, unvegetated sand bottoms, mudflats and saltmarsh creeks) in the Northern lagoon basin. Sampling was carried out seasonally (Spring, Summer and Autumn of 2002) in 4–7 stations for each habitat type, by means of a fine-mesh, small beach seine. Two-way analysis of variance was applied to assess the differences in species richness, fish diversity, density and standing stock amongst habitats, whereas fish assemblage composition was investigated by using multivariate analyses (MDS, ANOSIM, SIMPER). The analyses indicated that seagrass beds and saltmarsh creeks are relevant shallow habitats in structuring the small-sized fish assemblages of the Venice Lagoon, supporting specialized and recognizable fish assemblages. Those in seagrass beds, in particular, were characterized by higher species richness and standing stock with respect to all the others. The structuring role of these habitats was discussed in terms of both habitat complexity and degree of confinement. In contrast, sandy bottoms, mudflats and sparsely vegetated habitats were identified as “transition” habitats, with highly variable fish assemblages, influenced by the contribution of the adjacent habitats, and acting probably as both ‘buffer zones’ between the other habitats and migration routes for many fish species in the lagoon.  相似文献   

19.
The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.  相似文献   

20.
We studied the effects of habitat mosaics on butterfly assemblage on multiple spatial scales: landscape, landscape element, local habitat, and microhabitat, based on the transect counts conducted along a 3.84 km route. The transect route, including 21 local habitats, passed through two distinct areas: 1.65 km of a secondary deciduous Quercus forest and the grove of a shrine in Hiraoka, and 2.19 km of a mosaic of secondary deciduous Quercus forest, grassland, and farmland in Narukawa. The diversity of the landscape elements and species richness were higher in Narukawa than in Hiraoka; the landscape mosaic enhanced the species richness in Narukawa. However, the diversity indices and specialist species (univoltine tree feeder) were decreased in this mosaic landscape. The species richness at local habitats was also increased by the mosaic of microhabitats, such as the herbaceous layer, glade, and mantle in the local habitats, whereas it was decreased by an abundant shrub layer. The ratios of species richness to abundance in the local habitats were lower than expected based on random sampling from the total of Hiraoka and Narukawa. This means that local assemblages were non-random samples from an assemblage on the landscape or regional scale, and were made up by the process of habitat selection of butterfly species in the assemblages on the landscape or regional scale. For conservation of butterfly assemblages, we recommend that woodlands should be kept without fragmentation, but with glades or small grasslands, and with clearance of the shrub layer along the path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号