首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polar cod, Boreogadus saida, is a key species in the Arctic Ocean ecosystem. We examined the distribution pattern of B. saida and other fish larvae in relation to oceanographic parameters, including sea surface temperature and salinity (SST and SSS), the mode of temperature and salinity within the water column (F temp and F sal), and the temporal duration between the date of sea ice retreat and the date of field surveys (dSRT) in the northern Bering Sea and Chukchi Sea during the summers of 2008 and 2013. Sampling was conducted onboard the T/S Oshoro-Maru using a bongo net for 2 years. At sampling stations, the temperature and salinity were measured using conductivity-temperature-depth profiler casts. We calculated dSRT from satellite derived polar gridded sea ice concentration data. A total of 1186 individuals comprising 7 families and 16 species were collected, with B. saida (35 %) and Ammodytes hexapterus (27 %) dominating the catch in number. Based on the species composition (cluster analysis), the sampling stations were divided into four groups. Pleuronectidae dominated group A, which was characterized by relatively high temperature (SST and F temp), while B. saida dominated group B, characterized by low temperatures. A. hexapterus dominated group C and D, which had similar temperatures and salinities, but group C had a shorter dSRT than group D. The latter was also differentiated by the presence of Lumpenus sp. B. saida, which were most abundant in regions where temperatures ranged from ?2 to 0.5 °C. These results, the geographical variation of group B sampling stations, suggest there are two separate spawning areas characterized by similar fish communities and related to consistently cold bottom temperatures. Moreover, stations with a higher abundance of smaller sized larval B. saida were characterized by a short dSRT, whereas stations with a lower abundance and a larger size were characterized by a long dSRT.  相似文献   

2.
The early life stages of Boreogadus saida and Arctogadus glacialis are morphologically similar, making it difficult to assess differences in their ecological niche. The present study documented for the first time the early life stage ecology of A. glacialis, compared it to that of B. saida, and identified the factors separating the niches of the two sympatric species. The 10,565 larval gadids collected in the Beaufort Sea from April to August of 2004 and 2008 were identified to species either directly by genetics and/or otolith nucleus size, or indirectly with a redistribution procedure. Between 8.0 and 8.7 % of all gadids were assigned to A. glacialis. Larvae of A. glacialis were longer at hatch and experienced lower mortality rates than those of B. saida. The two species shared similar spatiotemporal and vertical distributions, hatching season, and growth rate. Under the ice, feeding incidence of B. saida was low (14 %) relative to A. glacialis (88 %). At lengths <15 mm, both species specialized on different prey. The diet of fish >15 mm overlapped (Schoener’s index = 0.7), with Calanus glacialis and C. hyperboreus providing >50 % of the carbon intake of both species. The higher mortality in B. saida may be explained by the smaller size at age from hatching to metamorphosis and a lower under-ice feeding incidence. The early larval stage appears to be the key period of niche divergence between the two species.  相似文献   

3.
Pelagic larval dispersal habits influence the population genetic structure of marine mollusk organisms via gene flow. The genetic information of the clam Gomphina aequilatera (short larval stage, 10 days) which is ecologically and economically important in the China coast is unknown. To determine the influence of planktonic larval duration on the genetic structure of G. aequilatera. Mitochondrial markers, cytochrome oxidase subunit i (COI) and 12S ribosomal RNA (12S rRNA), were used to investigate the population structure of wild G. aequilatera specimens from four China Sea coastal locations (Zhoushan, Nanji Island, Zhangpu and Beihai). Partial COI (685 bp) and 12S rRNA (350 bp) sequences were determined. High level and significant FST values were obtained among the different localities, based on either COI (FST?=?0.100–0.444, P?<?0.05) or 12S rRNA (FST?=?0.193–0.742, P?<?0.05), indicating a high degree of genetic differentiation among the populations. The pairwise Nm between Beihai and Zhoushan for COI was 0.626 and the other four pairwise Nm values were >?1, indicating extensive gene flow among them. The 12S rRNA showed the same pattern. AMOVA test results for COI and 12S rRNA indicated major genetic variation within the populations: 77.96% within and 22.04% among the populations for COI, 55.73% within and 44.27% among the populations for 12S rRNA. A median-joining network suggested obvious genetic differentiation between the Zhoushan and Beihai populations. This study revealed the extant population genetic structure of G. aequilatera and showed a strong population structure in a species with a short planktonic larval stage.  相似文献   

4.
Patterns of genetic structure and diversity are largely mediated by a species’ ecological niche and sensitivity to climate variation. Some species with narrow ecological niches have been found to exhibit increased population differentiation, limited gene flow across populations, and reduced population genetic diversity. In this study, we examine patterns of population genetic structure and diversity of four bumble bee species that are broadly sympatric, but do not necessarily inhabit the same ecological niche in the Pacific Northwest of the United States. Testing for the effect of isolation by geographic distance (IBD) with linearized F st and D est found that Bombus sylvicola and B. mixtus exhibited significant IBD across populations. In contrast, both B. melanopygus and B. flavifrons, two species that are distributed across a broad elevation gradient, exhibited no IBD, a result further corroborated by Bayesian a priori population assignment tests. Furthermore, we discovered that B. sylvicola populations distributed on the Olympic Peninsula have significantly less average allelic diversity than populations distributed in the Cascade Mountains. Our results suggest that populations distributed in the Olympic Mountains represent a distinct genetic cluster relative to the Cascade Mountains, with B. sylvicola and B. mixtus likely experiencing the greatest degree of population genetic differentiation relative to B. flavifrons and B. melanopygus. While bumble bees are known to co-exist across a diversity of habitats, our results demonstrate that underlying population genetic structure and diversity may not necessarily be similar across species, and are largely governed by their respective niches.  相似文献   

5.
Three of the five European species of Branchinecta have a disjunct distribution. In this study, we analyze populations of B. ferox and B. orientalis for mitochondrial (cox1) and nuclear (ITS2) molecular markers. We compare intraspecific genetic divergences between geographically distant populations of B. orientalis, from its only known Spanish population (originally described as B. cervantesi) and from a Hungarian population (assigned to B. orientalis since its discovery), with data from two relatively close Iberian populations of B. ferox. Results indicate that isolation between B. ferox and B. orientalis clades is ancient, and that the clade including the two Iberian populations of B. ferox is geographically structured. Conversely, Iberian and Hungarian populations of B. orientalis do not show geographical structure for the mitochondrial fragment. Lack of geographic structure coupled with very low genetic distances indicates that current Iberian and Hungarian populations of B. orientalis originated from a common population stock, and that the time elapsed since their separation has not been long enough to render the clades reciprocally monophyletic. We hypothesize that colonization of the Iberian Peninsula by B. orientalis is probably the consequence of a single recent dispersal event, and consequently we confirm the synonymy between B. cervantesi and B. orientalis.  相似文献   

6.
Hybrid peony (Paeonia hybrida Pall.) is listed as endangered in Russian Federation (since 1988) and in several regions of Russia. The structure of the isolated population from Bashkir Trans-Uralian region, separated by 1500 km from the main geographic range of this species, has been studied using isoenzyme markers from 11 loci. The population is split between two geographical locations, both characterized by a relatively high genetic diversity (mean allele number A = 1.9±0.3, percentage of polymorphic loci P = 0.54, observed heterozigosity H O = 0.223±0.068, expected heterozigosity H E = 0.229±0.067) and a quite low intergroup genetic differentiation (fixation index F ST = 0.008, Nei’s genetic distance D = 0.011). In a subpopulation located near a swampy lake in dense cereal grass and steppe shrubby vegetation, autocorrelation analysis has revealed spatial structuring of genetic variability. In the other location, a stipa-forb steppe on a flat hill slope, a uniform spatial structure of the genotypes has been observed. The results are discussed with respect to the ecological characteristics of the species and the conservation of the genetic pool of the population in situ and ex situ.  相似文献   

7.
Results of previous morphometric and genetic analyses of grey wolf (Canis lupus L.) population from Serbia indicated different patterns of population subdivision. In order to explore population structure, level of genetic variability, genetic drift, inbreeding and signals of bottleneck for grey wolves from Serbia, we applied highly polymorphic genetic markers (microsatellites). Obtained data are valuable in determination of conservation units and creation of appropriate management plans. We have amplified 18 highly polymorphic microsatellites, in a total sample of 75 grey wolves, from different localities across Serbia and multilocus genotypes were analyzed using appropriate software. Observed values of the basic genetic parameters (HO = 0.69; HE = 0.75) indicated moderate level of genetic variability, similar to genetic variability in other populations belonging to the Dinaric-Balkan population of grey wolf. In STRUCTURE analysis, although ΔK was estimated to be at first peak K = 2, and second peak K = 4, CLUMPAK analyses showed that there’s no structuring for any of assumed K, and therefore the population of grey wolf from Serbia may be considered as one continuous population and treated as one conservation unit in future management plans. Signals of bottleneck haven’t been observed (Wilcoxon test two phase mutation model p = 0.247; and stepwise mutation model p = 0.815).  相似文献   

8.
Habitat fragmentation due to anthropogenic activities is the major cause of biodiversity loss. Endemic and narrowly distributed species are the most susceptible to habitat degradation. Penstemon scariosus is one of many species whose natural habitat is vulnerable to industrialization. All varieties of P. scariosus (P. scariosus var. albifluvis, P. scariosus var. cyanomontanus, P. scariosus var. garrettii, P. scariosus var. scariosus) have small distribution ranges, but only P. scariosus var. albifluvis is being considered for listing under the Endangered Species Act. We used eight microsatellites or simple sequence repeats (SSRs) loci and two amplified fragment length polymorphism (AFLP) primer combinations to investigate the population genetic structure and diversity of P. scariosus varieties. Moreover, we compared the utility of the two marker systems in conservation genetics and estimated an appropriate sample size in population genetic studies. Genetic differentiation among populations based on Fst ranged from low to moderate (Fst?=?0.056–0.157) and from moderate to high when estimated with Des (Des?=?0.15–0.32). Also, AMOVA analysis shows that most of the genetic variation is within populations. Inbreeding coefficients (Fis) were high in all varieties (0.20–0.56). The Bayesian analysis, STRUCTURE, identified three clusters from SSR data and four clusters from AFLPs. Clusters were not consistent between marker systems and did not represent the current taxonomy. MEMGENE revealed that a high proportion of the genetic variation is due to geographic distance (R2?=?0.38, P?=?0.001). Comparing the genetic measurements from AFLPs and SSRs, we found that AFLP results were more accurate than SSR results across sample size when populations were larger than 25 individuals. As sample size decreases, the estimates become less stable in both AFLP and SSR datasets. Finally, this study provides insight into the population genetic structure of these varieties, which could be used in conservation efforts.  相似文献   

9.
Saussurea involucrata (Asteraceae) is a medicinal and second-degree national priority endangered plant that is mainly distributed in the high latitude region of the western Tianshan Mountains. The population is fragmented and isolated, and extensive human impact merits a suitable and specific conservation strategy, which can be compiled based on the genetic diversity, population structure, and demographic history. Phylogeographic studies were conducted on a total of five natural populations and 150 individuals were sampled. Data from three cpDNA intergenic spacer regions (trnL-F, matK, and ndhF-rpl32) and nrDNA ITS sequences showed that twelve haplotypes in cpDNA and five haplotypes in nrDNA indicated high genetic diversity among populations sampled (H T?=?0.820 and 0.756) and within populations sampled (H S?=?0.792 and 0.721). Additionally, the high genetic diversity did not mirror genetic structure in either cpDNA (F ST?=?0.03153, G ST?>?N ST, p?<?0.05) or nrDNA (F ST?=?0.03666, meaningless G ST and N ST). Two groups (north and south) were determined for a SAMOVA analysis. Based on this analysis, the demographic history was conducted with a Bayesian Skyline Plot and Isolation with Migration analysis, which showed sustainable and stable extension without a marked bottleneck. Divergence time was indicated at c. 6.25 Mya (90%HPD: 15.30–0.22 Mya) in the Miocene, which is consistent with the formation of the Kelasu section of Tianshan. The southern populations in the Bayanbulak and Gonglu regions require additional attention and transplanting would be an effective way to restore rare cpDNA haplotypes, increase effective population size, and migration rate. Our results suggested that in situ conservation of S. involucrata in western Tianshan should be the main strategy for protection and recovery of the species.  相似文献   

10.

Background

Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO2-induced behavioural changes. Here, we present the metabolic consequences of long-term exposure to projected ocean acidification (396–548 μatm PCO2 under control and 915–1272 μatm under treatment conditions) and parallel warming in the brain of two related fish species, polar cod (Boreogadus saida, exposed to 0 °C, 3 °C, 6 °C and 8 °C) and Atlantic cod (Gadus morhua, exposed to 3 °C, 8 °C, 12 °C and 16 °C). It has been shown that B. saida is behaviourally vulnerable to future ocean acidification scenarios, while G. morhua demonstrates behavioural resilience.

Results

We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In B. saida, changes in amino acid and osmolyte metabolism at the highest temperature tested were also affected by CO2, possibly emphasizing energetic limitations. We did not observe changes in neurotransmitters, energy metabolites, membrane components or osmolytes that might serve as a compensatory mechanism against CO2 induced behavioural impairments. In contrast to B. saida, such temperature limitation was not detected in G. morhua; however, at 8 °C, CO2 induced an increase in the levels of metabolites of the glutamate/GABA-glutamine cycle potentially indicating greater GABAergic activity in G.morhua. Further, increased availability of energy-rich substrates was detected under these conditions.

Conclusions

Our results indicate a change of GABAergic metabolism in the nervous system of Gadus morhua close to the optimum of the temperature range. Since a former study showed that juvenile G. morhua might be slightly more behaviourally resilient to CO2 at this respective temperature, we conclude that the observed change of GABAergic metabolism could be involved in counteracting OA induced behavioural changes. This may serve as a fitness advantage of this respective species compared to B. saida in a future warmer, more acidified polar ocean.
  相似文献   

11.
Brycon hilarii, a characid species endemic to the Upper Paraguay hydrographic basin, is important to regional artisanal and sports fisheries. To develop effective strategies for conservation of this species in the face of potential environmental changes in the Pantanal region, we characterized genetic structuring within and among six B. hilarii collections based on variation at five microsatellite DNA markers. Within-population genetic variability was high, with 75 different alleles; mean average allelic richness per locus per sample location ranged from 6.06 to 7.99. Nei’s gene diversity (hs) varied among drainages from 0.66 (±0.2) to 0.69 (±0.2), with an average across the four genetically identified populations of 0.68 (±0.02). Analyses of Jost’s D EST and F ST-like indices, AMOVA, and Structure-based clustering analyses indicated that B. hilarii populations exhibit a low level of genetic structure, with some indications that the Taquari River population is somewhat distinct from others. Results of K-means analysis suggested little or no structuring, with weakly differentiated populations above and below the confluence of the Paraguay and Taquari rivers. Because B. hilarii populations in the Pantanal are linked by high levels of gene flow, habitat alterations that would interfere with gene flow may jeopardize the long-term persistance of the species.  相似文献   

12.
13.
Competitive allele-specific PCR (KASPar) assay is a user-friendly system that provides flexibility in the numbers of single nucleotide polymorphisms (SNPs) and genotypes. Based on Illumina-GA-IIx genomic data from 10 genotypes with a broad genetic background, 3183 SNPs were selected for KASPar assays development, and 568 were finally converted and selected for Brassica rapa germplasm characterization (17.8%) on the basis of reproducibility, missing data rate, and uniform genetic distribution. High levels of polymorphism of these markers across 231 B. rapa genotypes were verified, illustrating by high polymorphic information content (averaged 0.34), minor allele frequency (0.37), genetic diversity (0.45), and the low observed heterozygosity (0.10). Based on the SNP dataset, structure and principal coordinates analysis, and neighbor-joining phylogenetic methods were used to examine the population structure and gave highly consistent results. The 231 accessions were divided into the four primary subspecies, representing 99 accessions from B. rapa ssp. pekinensis, 85 from B. rapa ssp. chinensis, 30 from B. rapa ssp. rapifera, and 17 from B. rapa ssp. oleifera and were further subdivided into 12 lower-order clusters according to different morphotypes. The genetic variability and pairwise fixation index analysis revealed that the ssp. pekinensis accessions possess the most extensive genetic variation among the four subspecies. The KASPar system is highly useful for validating SNPs and will be valuable for genetics research and breeding applications in B. rapa.  相似文献   

14.
Bethencourtia Choisy ex Link is an endemic genus of the Canary Islands and comprises three species. Bethencourtia hermosae and Bethencourtia rupicola are restricted to La Gomera, while Bethencourtia palmensis is present in Tenerife and La Palma. Despite the morphological differences previously found between the species, there are still taxonomic incongruities in the group, with evident consequences for its monitoring and conservation. The objectives of this study were to define the species differentiation, perform population genetic analysis and propose conservation strategies for Bethencourtia. To achieve these objectives, we characterized 10 polymorphic SSR markers. Eleven natural populations (276 individuals) were analyzed (three for B. hermosae, five for B. rupicola and three for B. palmensis). The results obtained by AMOVA, PCoA and Bayesian analysis on STRUCTURE confirmed the evidence of well-structured groups corresponding to the three species. At the intra-specific level, B. hermosae and B. rupicola did not show a clear population structure, while B. palmensis was aggregated according to island of origin. This is consistent with self-incompatibility in the group and high gene flow within species. Overall, the genetic diversity of the three species was low, with expected heterozygosity values of 0.302 (B. hermosae), 0.382 (B. rupicola) and 0.454 (B. palmensis). Recent bottleneck events and a low number of individuals per population are probably the causes of the low genetic diversity. We consider that they are naturally rare species associated with specific habitats. The results given in this article will provide useful information to assist in conservation genetics programs for this endemic genus.  相似文献   

15.
Genetic diversity and population structure of 88 Chinese Lentinula edodes strains belonging to four geographic populations were inferred from 68 Insertion-Deletion (InDel) and two simple sequence repeat (SSR) markers. The overall values of Shannon’s information index and gene diversity were 0.836 and 0.435, respectively, demonstrating a high genetic diversity in Chinese L. edodes strains. Among the four geographic populations, the Central China population displayed a lower genetic diversity. Multiple analyses resolved two unambiguous genetic groups that corresponded to two regions from which the samples were collected—one was a high-altitude region (region 1) and the other was a low-altitude region (region 2). Results from analysis of molecular variance suggested that the majority of genetic variation was contained within populations (74.8 %). Although there was a strong genetic differentiation between populations (F ST ?=?0.252), the variability of ITS sequences from representative strains of the two regions (<3 %) could not support the existence of cryptic species. Pairwise F ST values and Nei’s genetic distances showed that there were relatively lower genetic differentiations and genetic distances between populations from the same region. Geographic distribution could play a vital role in the formation of the observed population structure. Mycelium growth rate and precocity of L. edodes strains displayed significant differences between the two regions. Strains from region 2 grew faster and fructified earlier, which could be a result of adaptation to local environmental factors. To the best of our knowledge, this was the first study on the genetic structure and differentiation between populations, as well as the relationship between genetic structure and phenotypic traits in L. edodes.  相似文献   

16.
Casuarina is a widely cultivated plantation tree species in coastal India, primarily due to its fast growth, high productivity and suitable for pulp and paper production. However, genetic studies of Casuarina have been hindered by lack of genomic resources and genetic markers. Knowledge of the genetic diversity and population structure of Casuarina germplasms will provide the basis for utilizing and improving resource in the breeding program. Keeping this in view, in the present study, we have identified a total of 11,503 simple sequence repeat (SSR) makers from 86,415 expressed sequence tags (ESTs) of Casuarina equisetifolia and C. junghuhniana after redundancy elimination. Dinucleotide repeats were the most abundant accounting for 72.5 % of all microsatellites, followed by trimer (23.4 %), hexamer (1.7 %), tetramer (1.5 %), and very few pentamer (0.6 %) repeats. Of these, 50 markers were used to estimate genetic diversity and population structure among 96 accessions of C. cunninghamiana and C. junghuhniana. EST-SSR markers revealed high level of polymorphism, detecting a total of 829 alleles with an average of 17 alleles per locus. Polymorphic information content (PIC) values ranged from 0.32 to 0.93, with an average of 0.78 per locus. The average observed (H o ) and expected heterozygosity (H e ) obtained was high and fairly similar in C. cunninghamiana and C. junghuhniana, thereby suggesting highly heterogeneous nature of Casuarina. Population structure using a Bayesian model-based clustering approach identified clear delineation between C. cunninghamiana and C junghuhniana. Further, these markers were also evaluated in four species of Casuarina confirming high rate of cross-species transferability. The results of this study can provide valuable insights for genetic and genomic research in Casuarina.  相似文献   

17.
Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright’s inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.  相似文献   

18.
The genetic diversity and population structure of Taxus cuspidata Sieb. et Zucc. ex Endl. on the Russian part of its range was studied for the first time on the basis of the nucleotide polymorphism of intergenic spacers psbA–trnH, trnL–trnF, and trnS–trnfM of chloroplast DNA. A high level of gene (h = 0.807) and nucleotide (π = 0.0227) diversity was revealed. The data of AMOVA showed that the interpopulation component accounted for 12% of genetic variability (F ST = 0.12044, P = 0.0000). We revealed 15 haplotypes, four of which were shown to be unique. The presence of common haplotypes in the majority of populations, the absence of phylogenetic structure, and low values or even the absence of nucleotide divergence show that the T. cuspidata populations studied are fragments of the once common ancestor population. Geographical isolation, which resulted from climatic changes in the Pleistocene–Holocene, as well as from human activities, did not produce a significant effect on the genetic structure of the species.  相似文献   

19.
Efforts to mitigate amphibian declines are hindered by a lack of information about basic aspects of their biology and demography. The effective to census population size ratio (N e /N c ) is one of the most important parameters for the management of wildlife populations because it combines information on population abundance and genetic diversity and helps predict population viability in the long term. Few studies have calculated this ratio in amphibians, which sometimes show low ratios, associated with a higher extinction risk. Here we integrate field-based (capture-mark-recapture studies, egg string counts) and molecular approaches (estimation of the effective number of breeders (N b ) and the effective population size (N e ) based on genotypes from larval cohorts and candidate parents) to produce the first estimates of the N e /N c and N b /N c ratios in two amphibians, the Iberian ribbed newt Pleurodeles waltl and the western spadefoot Pelobates cultripes. Additionally, we investigate sex-biased dispersal in both species based on direct (field observations) and indirect (genetic) evidence. Both species showed similar ratios, slightly lower in Pleurodeles (0.21–0.24) than in Pelobates (0.25–0.30). Observed displacement rates were low in both species (P. waltl?=?0.51%; P. cultripes?=?1.23%). We found no evidence for sex-biased dispersal in P. cultripes, but both direct and indirect evidences suggest a tendency for female-biased dispersal in P. waltl. We discuss differences in the genetic estimates of N e and N b provided by three inference methods and the implications of our findings for the management of these species, characteristic of Mediterranean wetlands in the Iberian Peninsula and listed as Near Threatened.  相似文献   

20.
Major histocompatibility complex (MHC) genes are excellent markers for the study of adaptive genetic variation occurring over different geographical scales. The Chinese egret (Egretta eulophotes) is a vulnerable ardeid species with an estimated global population of 2600–3400 individuals. In this study, we sampled 172 individuals of this egret (approximately 6 % of the global population) from five natural populations that span the entire distribution range of this species in China. We examined their population genetic diversity and geographical differentiation at three MHC class II DAB genes by identifying eight exon 2 alleles at Egeu-DAB1, eight at Egeu-DAB2 and four at Egeu-DAB3. Allelic distributions at each of these three Egeu-DAB loci varied substantially within the five populations, while levels of genetic diversity varied slightly among the populations. Analysis of molecular variance showed low but significant genetic differentiation among five populations at all three Egeu-DAB loci (haplotype-based ?ST: 0.029, 0.020 and 0.042; and distance-based ?ST: 0.036, 0.027 and 0.043, respectively; all P < 0.01). The Mantel test suggested that this significant population genetic differentiation was likely due to an isolation-by-distance pattern of MHC evolution. However, the phylogenetic analyses and the Bayesian clustering analysis based on the three Egeu-DAB loci indicated that there was little geographical structuring of the genetic differentiation among five populations. These results provide fundamental population information for the conservation genetics of the vulnerable Chinese egret.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号