首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mi-1.2 gene in tomato (Solanum lycopersicum) is a member of the nucleotide-binding leucine-rich repeat (NBLRR) class of plant resistance genes, and confers resistance against root-knot nematodes (Meloidogyne spp.), the potato aphid (Macrosiphum euphorbiae), and the sweet potato whitefly (Bemisia tabaci). Mi-1.2 mediates a rapid local defensive response at the site of infection, although the signaling and defensive pathways required for resistance are largely unknown. In this study, eggplant (S. melongena) was transformed with Mi-1.2 to determine whether this gene can function in a genetic background other than tomato. Eggplants that carried Mi-1.2 displayed resistance to the root-knot nematode Meloidogyne javanica but were fully susceptible to the potato aphid, whereas a susceptible tomato line transformed with the same transgene was resistant to nematodes and aphids. This study shows that Mi-1.2 can confer nematode resistance in another Solanaceous species. It also indicates that the requirements for Mi-mediated aphid and nematode resistance differ. Potentially, aphid resistance requires additional genes that are not conserved between tomato and eggplant.  相似文献   

2.
Nematode resistance in plants: the battle underground   总被引:1,自引:0,他引:1  
Parasitic nematodes infect thousands of plant species, but some plants harbor specific resistance genes that defend against these pests. Several nematode resistance genes have been cloned in plants, and most resemble other plant resistance genes. Nematode resistance is generally characterized by host plant cell death near or at the feeding site of the endoparasitic worm. The timing and localization of the resistance response varies with the particular resistance gene and nematode interaction. Although there is genetic evidence that single genes in the nematode can determine whether a plant mounts a resistance response, cognate nematode effectors corresponding to a plant resistance gene have not been identified. However, recent progress in genetics and genomics of both plants and nematodes, and developments in RNA silencing strategies are improving our understanding of the molecular players in this complex interaction. In this article, we review the nature and mechanisms of plant-nematode interactions with respect to resistance in plants.  相似文献   

3.
Loss of susceptibility as an alternative for nematode resistance   总被引:3,自引:0,他引:3  
Among plant pathogens, sedentary endoparasitic nematodes are one of the most damaging pests in global agriculture. These obligate parasites interact with their hosts in a quite unique and intriguing way. They induce the redifferentiation of root cells into specialized feeding cells essential for nematode growth and reproduction; thus, nematodes have evolved the ability to exploit plant genes and hijack host functions for their own requirements. Various approaches to engineer plants with resistance to parasitic nematodes have been pursued, most focusing on the introduction of resistance genes. An alternative strategy to achieve resistance is to exploit the susceptibility of plant disease. Better knowledge of the plant response during the compatible interaction should allow the identification of targets to engineer resistance to parasitic nematodes in crop species.  相似文献   

4.
Entomopathogenic nematodes are natural enemies and effective biological control agents of subterranean insect herbivores. Interactions between herbivores, plants, and entomopathogenic nematodes are mediated by plant defense pathways. These pathways can induce release of volatiles and recruit entomopathogenic nematodes. Stimulation of these plant defense pathways for induced defense against belowground herbivory may enhance biological control in the field. Knowledge of the factors affecting entomopathogenic nematode behaviour belowground is needed to effectively implement such strategies. To that end, we explore the effect of elicitor, elicitor dose, mechanical damage, and entomopathogenic nematode release distance on recruitment of entomopathogenic nematode infective juveniles to corn seedlings. Increasing doses of methyl jasmonate and methyl salicylate elicitors recruited more entomopathogenic nematodes as did mechanical damage. Recruitment of entomopathogenic nematodes was higher at greater release distances. These results suggest entomopathogenic nematodes are highly tuned to plant status and present a strategy for enhancing biological control using elicitor-stimulated recruitment of entomopathogenic nematodes.  相似文献   

5.
Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode, Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02 protein interacted with a specific (AT4G16260) host plant β-1,3-endoglucanase in both yeast and plant cells, possibly to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the nematode and peak expression of At4g16260 in plant roots coincided at around 3-5 d after root infection by the nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were reduced in nematode susceptibility, suggesting a potential role of host β-1,3-endoglucanase in the defence response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective results suggest that, as with other pathogens, active suppression of host defence is a critical component for successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.  相似文献   

6.
Signaling between nematodes and plants   总被引:8,自引:0,他引:8  
After hatching in the soil, root-knot nematodes must locate and penetrate a root, migrate into the vascular cylinder, and establish a permanent feeding site. Presumably, these events are accompanied by extensive signaling between the nematode parasite and the host. Hence, much emphasis has been placed on identifying proteins that are secreted by the nematode during the migratory phase. Further progress in understanding the signaling events has been made recently by studying the host response. Striking parallels can be drawn between the nematode-plant interaction and plant symbioses with other microorganisms, and evidence is emerging to suggest that nematodes acquired components of their parasitic armory from those microbes.  相似文献   

7.

Background

Gastrointestinal nematodes are one of the most serious causes of disease in domestic ruminants worldwide. There is considerable variation in resistance to gastrointestinal nematodes within and between sheep breeds, which appears to be due to underlying genetic diversity. Through selection of resistant animals, rapid genetic progress has been demonstrated in both research and commercial flocks. Recent advances in genome sequencing and genomic technologies provide new opportunities to understand the ovine host response to gastrointestinal nematodes at the molecular level, and to identify polymorphisms conferring nematode resistance.

Results

Divergent lines of Romney and Perendale sheep, selectively bred for high and low faecal nematode egg count, were genotyped using the Illumina® Ovine SNP50 BeadChip. The resulting genome-wide SNP data were analysed for selective sweeps on loci associated with resistance or susceptibility to gastrointestinal nematode infection. Population differentiation using FST and Peddrift revealed sixteen regions, which included candidate genes involved in chitinase activity and the cytokine response. Two of the sixteen regions identified were contained within previously identified QTLs associated with nematode resistance.

Conclusions

In this study we identified fourteen novel regions associated with resistance or susceptibility to gastrointestinal nematodes. Results from this study support the hypothesis that host resistance to internal nematode parasites is likely to be controlled by a number of loci of moderate to small effects.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-637) contains supplementary material, which is available to authorized users.  相似文献   

8.
Sedentary plant‐parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL‐ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode‐induced syncytia. Loss‐of‐function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.  相似文献   

9.
Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and duration of biological control. In future research, greater use should be made of bioassays that measure nematode suppression because changes in abundance of particular antagonists may not affect biological control of plant parasites.  相似文献   

10.
Plant-parasitic nematodes are obligate parasites, and planting cultivars that are highly resistant to these organisms places extensive selection pressure on the target species and affects nontarget nematodes as well. Problems encountered with long-term planting of cultivars resistant to nematodes include shifts in nematode races or species and the occurrence of multiple species of nematodes within the same field. These problems can be alleviated to some extent when crop management is used to lessen the selection pressure for change on the nematode populations. Race shifts within populations and possibly shifts between nematode species can be delayed by rotating susceptible cultivars and nonhost crops with resistant cultivars. Nematicides in conjunction with resistant cultivars may be used to limit damage by multiple species of nematodes. Some cultivars have resistance to multiple species of nematodes, but greatly increased research effort is needed in this area. More intensive plant breeding effort will be required to make nematode resistant cultivars competitive in quality and yield with more productive, susceptible cultivars.  相似文献   

11.
RNA interference and plant parasitic nematodes   总被引:1,自引:0,他引:1  
RNA interference (RNAi) has recently been demonstrated in plant parasitic nematodes. It is a potentially powerful investigative tool for the genome-wide identification of gene function that should help improve our understanding of plant parasitic nematodes. RNAi should help identify gene and, hence, protein targets for nematode control strategies. Prospects for novel resistance depend on the plant generating an effective form of double-stranded RNA in the absence of an endogenous target gene without detriment to itself. These RNA molecules must then become available to the nematode and be capable of ingestion via its feeding tube. If these requirements can be met, crop resistance could be achieved by a plant delivering a dsRNA that targets a nematode gene and induces a lethal or highly damaging RNAi effect on the parasite.  相似文献   

12.
Plant-nematode interactions   总被引:8,自引:0,他引:8  
Root-knot nematodes and cyst nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The molecular characterization of induced plant genes has provided insight into the plant processes that are usurped by nematodes as they establish their specialized feeding cells. Recently, several gene products have been identified that are secreted by the nematode during parasitism. The corresponding genes have strong similarity to microbial genes or to genes that are found in nematodes that parasitize animals. New information on host resistance genes and nematode virulence genes provides additional insight into this complex interaction.  相似文献   

13.
Due to climate warming, many plant species shift ranges towards higher latitudes. Plants can disperse faster than most soil biota, however, little is known about how range‐expanding plants in the new range will establish interactions with the resident soil food web. In this paper we examine how the soil nematode community from the new range responds to range‐expanding plant species compared to related natives. We focused on nematodes, because they are important components in various trophic levels of the soil food web, some feeding on plant roots, others on microbes or on invertebrates. We expected that range expanding plant species have fewer root‐feeding nematodes, as predicted by enemy release hypothesis. We therefore expected that range expanders affect the taxonomic and functional composition of the nematode community, but that these effects would diminish with increasing trophic position of nematodes in the soil food web. We exposed six range expanders (including three intercontinental exotics) and nine related native plant species to soil from the invaded range and show that range expanders on average had fewer root‐feeding nematodes per unit root biomass than related natives. The range expanders showed resistance against rather than tolerance for root‐feeding nematodes from the new range. On the other hand, the overall taxonomic and functional nematode community composition was influenced by plant species rather than by plant origin. The plant identity effects declined with trophic position of nematodes in the soil food web, as plant feeders were influenced more than other feeding guilds. We conclude that range‐expanding plant species can have fewer root‐feeding nematodes per unit root biomass than related natives, but that the taxonomic and functional nematode community composition is determined more by plant identity than by plant origin. Plant species identity effects decreased with trophic position of nematodes in the soil food web.  相似文献   

14.
The Mi-1.2 resistance gene in tomato (Solanum lycopersicum) confers resistance against several species of root-knot nematodes (Meloidogyne spp.). This study examined the impact of M. javanica on the reproductive fitness of near-isogenic tomato cultivars with and without Mi-1.2 under field and greenhouse conditions. Surprisingly, neither nematode inoculation or host plant resistance impacted the yield of mature fruits in field microplots (inoculum=8,000 eggs/plant), or fruit or seed production in a follow-up greenhouse bioassay conducted with a higher inoculum level (20,000 eggs/plant). However, under heavy nematode pressure (200,000 eggs/plant), greenhouse-grown plants carrying Mi-1.2 had more than ten-fold greater fruit production than susceptible plants and nearly forty-fold greater estimated lifetime seed production, confirming prior reports of the benefits of Mi-1.2. In all cases Mi-mediated resistance significantly reduced nematode reproduction. These results indicated that tomato can utilize tolerance mechanisms to compensate for moderate levels of nematode infection, but that the Mi-1.2 resistance gene confers a dramatic fitness benefit under heavy nematode pressure. No significant cost of resistance was detected in the absence of nematode infection.  相似文献   

15.
Nematodes cause an estimated $118b annual losses to world crops and they are not readily controlled by pesticides or other control options. For many crops natural resistance genes are unavailable to plant breeders or progress by this approach is slow. Transgenic plants can provide nematode resistance for such crops. Two approaches have been field trialled that control a wide range of nematodes by either limiting use of their dietary protein uptake from the crop or by preventing root invasion without a direct lethality. In addition, RNA interference increasingly in tandem with genomic studies is providing a range of potential resistance traits that involve no novel protein production. Transgenic resistance can be delivered by tissue specific promoters to just root tissues where most economic nematodes invade and feed rather than the harvested yield. High efficacy and durability can be provided by stacking nematode resistance traits including any that natural resistance provides. The constraints to uptake centre on market acceptance and not the availability of appropriate biotechnology. The need to deploy nematode resistance is intensifying with loss of pesticides, an increased need to protect crop profit margins and in many developing world countries where nematodes severely damage both commodity and staple crops.  相似文献   

16.
The role of salicylic acid (SA) as a possible signaling component in the case of the infection of plants with nematodes has been studied using a model system consisting of the tomato (Lycopersicon esculentum (Mill.) and race 1 of the gall eelworm Meloidogyne incognita (Kofoid and White, 1919; Chitwood, 1949). The preplanting SA treatment of tomato seeds results in an increased nematode resistance of susceptible tomato cultivars; the protective effect is higher in the case of SA combined with chitosan, a biogenic elicitor of plant resistance. The studied preparations stimulate the growth and development of the plants. The increase in the resistance of tomato plants is related to the increased activity of phenylalanine ammonia-lyase and an increased SA content in plant tissues infected with nematodes; both these factors significantly influence nematode development.  相似文献   

17.
Parasitic nematode infections of humans and livestock continue to impose a significant public health and economic burden worldwide. Murine models of intestinal nematode infection have proved to be relevant and tractable systems to define the cellular and molecular basis of how the host immune system regulates resistance and susceptibility to infection. While susceptibility to chronic infection is propagated by T helper cell type 1 cytokine responses (characterised by production of IL-12, IL-18 and interferon-gamma), immunity to intestinal-dwelling adult nematode worms is critically dependent on a type 2 cytokine response (controlled by CD4+T helper type 2 cells that secrete the cytokines IL-4, IL-5, IL-9 and IL-13). However, the immune effector mechanisms elicited by type 2 cytokines in the gut microenvironment that precipitate worm expulsion have remained elusive. This review focuses on new studies that implicate host intestinal epithelial cells as one of the dominant immune effector cells against this group of pathogens. Specifically, three recently identified type 2 cytokine-dependent pathways that could offer insights into the mechanisms of expulsion of parasitic nematodes will be discussed: (i) the intelectins, a new family of galactose-binding lectins implicated in innate immunity, (ii) the resistin-like molecules, a family of small cysteine-rich proteins expressed by multiple cell types, and (iii) cytokine regulation of intestinal epithelial cell turnover. Identifying how the mammalian immune response fights gastrointestinal nematode infections is providing new insights into host protective immunity. Harnessing these discoveries, coupled with identifying what the targets of these responses are within parasitic nematodes, offers promise in the design of a new generation of anti-parasitic drugs and vaccines.  相似文献   

18.
【目的】筛选亚低温条件下抗线虫和促进植物生长发育的菌株。【方法】采用线虫击倒率测定、室内耐低温测定、拮抗测试和盆栽生物测定相结合的方法进行功能菌株的筛选;采用表型特征、生理生化特征、16S r RNA基因序列测定相结合的多相分类技术对筛选的菌株进行鉴定。【结果】从根结线虫多发的设施黄瓜和番茄病土中分离出细菌和放线菌297株;经对根结线虫击倒率的初步筛选,得到校正击倒率大于70%的活性菌株9株;通过复筛获得1株在亚低温条件下同时具有防线虫、防土传病原菌病、促生特性的生防菌株S205;菌株S205被鉴定为抗生素链霉菌(Streptomyces antibioticus)。【结论】获得一株在亚低温条件下同时具有抗线虫活性和促进植物生长发育的生防菌株S205,该研究对解决亚低温条件下根结线虫的防治具有重要意义。  相似文献   

19.
Glasshouse experiments were conducted to elicit biochemical substantiation for the observed difference in resistance to nematode infection in roots colonized by mycorrhiza, and susceptibility of the fresh flush of roots of the same plant that escaped mycorrhizal colonization. Tomato roots were assayed for their biochemical profiles with respect to total proteins, total phenols, indole acetic acid, activities of polyphenol oxidase, phenylalanine ammonia lyase and indole acetic acid oxidase. The roots of the same plant (one set) received Glomus fasciculatum and G. fasciculatum plus juveniles of Meloidogyne incognita separately; and half the roots of second set of plants received G. fasciculatum while the other half of roots did not receive any treatment. Roots colonized by G. fasciculatum recorded maximum contents of proteins and phenols followed by that of the roots that received G. fasciculatum plus M. incognita. However, IAA content was lowest in the roots that received mycorrhiza or mycorrhiza plus juveniles of root-knot nematode and correspondingly. Roots that received juveniles of root-knot nematode recorded maximum IAA content and per cent increase over healthy check and mycorrhiza-inoculated roots. The comparative assay on the activities of PPO, PAL and IAA oxidase enzymes in treated and healthy roots of tomato, indicated that PAL and IAA oxidase activities were maximum in G. fasciculatum colonized roots followed by the roots that received mycorrhiza plus juveniles of root-knot nematode, while the activity of PPO was minimum in these roots. The roots that received juveniles of root-knot nematode recorded minimum PAL and IAA oxidase activities and maximum PPO activity. Since the roots of same plant that received mycorrhiza and that did not receive mycorrhiza; and the plant that received nematode alone and mycorrhiza plus nematode recorded differential biochemical contents of proteins, total phenols and IAA, and differential activities of enzymes under study, it was evident that the biochemical defense response to mycorrhizal colonization against root-knot nematodes was localized and not systemic. This explained for the response of plant that differed in root galling due to nematode infection in presence of mycorrhizal colonization. The new or fresh roots which missed mycorrhizal colonization, got infected by nematodes and developed root galls.  相似文献   

20.
RNA interference (RNAi), first described for Caenorhabditis elegans , has emerged as a powerful gene silencing tool for investigating gene function in a range of organisms. Recent studies have described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when preparasitic juvenile nematodes take up double-stranded (ds)RNA that elicits a systemic RNAi response. Important developments over the last year have shown that in planta expression of a dsRNA targeting a nematode gene can successfully induce silencing in parasitizing nematodes. When the targeted gene has an essential function, a resistance effect is observed paving the way for the potential use of RNAi technology to control plant parasitic nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号