首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variability of the microbial population structure of the gut of omnivorous wireworms Agriotes obscurus (L) and Selatosomus aeneus (L) was studied. The limits of intra- and interspecific and intersite variation were determined. The stability of the microbial composition of the gut allows us to reveal the list of obligate saprotrophs (with 95% probability) using only five replications. In the case of S. aeneus, the influence of starvation and diet change was studied. Starvation changed the microbial population structure, while the diet did not. The results confirm that omnivorous wireworms have a stable gut microbial population, which suggests an advanced mutualistic relationship between wireworms and their gut bacteria, possibly assisting in digestion and providing for ecological flexibility of wireworms.  相似文献   

2.
The earthworm, Lumbricus rubellus, plays an essential role in soil ecosystems as it affects organic matter decomposition and nutrient cycling. By ingesting a mixture of organic and mineral material, a variety of bacteria and fungi are carried to the intestinal tract of the earthworm. To get a better understanding of the interactions between L. rubellus and the microorganisms ingested, this study tried to reveal if the diet affects the composition of the gut microflora of L. rubellus or if its intestinal tract hosts an indigenous, species-specific microbiota. A feeding experiment with L. rubellus was set up; individuals were collected in the field, transferred to a climate chamber and fed with food sources of different quality (dwarf shrub litter, grass litter or horse dung) for six weeks. DNA was extracted from the guts of the earthworms, as well as from the food sources and the surrounding soil, and further analysed by a molecular fingerprinting method, PCR-DGGE (Polymerase Chain Reaction -- Denaturing Gradient Gel Electrophoresis). We were able to demonstrate that the gut microbiota was strongly influenced by the food source ingested and was considerably different to that of the surrounding soil. Sequencing of dominant bands of the bacterial DGGE fingerprints revealed a strong occurrence of y-Proteobacteria in all gut samples, independent of the food source. A specific microflora in the intestinal tract of L. rubellus, robust against diet changes, could not be found.  相似文献   

3.
We determined that spinosad interacts synergistically with the biocontrol agent Metarhizium anisopliae (Metch) Sorokin to increase the mortality of two wild-collected wireworm species, Agriotes lineatus (L.), and Agriotes obscurus (L.). Bioassays were performed using a M. anisopliae isolate originally acquired from a local wireworm cadaver. M. anisopliae was applied as a soil drench at 3.3 x 10(2) and 10(4) conidia per gram sand, respectively. Soil drenches also were prepared using a commercial formulation of the actinomycete toxins spinosyn-A and spinosyn-D (common name spinosad) at sublethal doses of 1.5, 3, and 6 ppm active ingredient per gram sand. Combined treatments of spinosad and M. anisopliae were synergistic in causing mortality for all spinosad concentrations. Wireworm feeding activity was reduced after exposure to both spinosad and M. anisopliae and was found to be concentration dependent. The high mortality and reduced rate of wireworm feeding suggest that spinosad and M. anisopliae treatment combinations should be tested in the field.  相似文献   

4.
研究旨在分析玫瑰高原鳅(Triplophysa rosa)肠道微生物的结构组成和多样性,探索其肠道微生物的潜在功能。提取了5尾玫瑰高原鳅的肠道总DNA,运用Illumina Miseq平台对肠道微生物16S rRNA的V3—V4区进行了测序,统计样品肠道微生物的操作分类单元(Operational Taxonomic Units, OTUs)数量,分析物种组成、丰度及Alpha多样性,并预测肠道微生物的功能。结果显示,玫瑰高原鳅的肠道微生物有19门、31纲、87目、146科、253属、 320种, 451个OTUs。在门水平上,优势菌群为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes);在属水平上,优势菌群为气单胞菌属(Aeromonas)、爱德华菌属(Edwardsiella)、邻单胞菌属(Plesiomonas)和希瓦氏菌属(Shewanella)。功能预测表明,肠道微生物编码的大多数基因与新陈代谢相关,其中"碳水化合物运输和代谢"和"氨基酸转运与代谢"功能类群的相对丰度较高。玫瑰高原鳅肠道内微生物组成复杂,...  相似文献   

5.
目的以恒河猴幼猴为模型,采用16S rRNA宏基因组方法探讨十二指肠、盲肠、直肠的菌群组成。方法收集4例健康幼猴十二指肠、盲肠、直肠样本,提取细菌总DNA,采用新一代高通量测序技术对16S rRNA基因的V3-V4高变区测序,分析比较菌群结构及多样性。结果 (1)门水平各肠段微生物优势菌群主要为硬壁菌门、变形菌门及拟杆菌门,在各肠段中的占比总和超过88%;(2)属水平,十二指肠中以芽胞杆菌属等为优势菌属,盲肠中以螺杆菌属、颤杆菌属、孢杆菌属等为优势菌属,直肠中以乳酸菌属、链球菌属、颤杆菌属等为优势菌属;(3)各肠段微生物功能差异较大,十二指肠主要承担营养物质的消化吸收,盲肠主要承担细胞及遗传物质的合成,直肠主要承担调节机体免疫力、抗感染等功能。结论各肠段菌群组成差异较大;各肠段细菌功能差异较大,且与其生理功能有一定关联;在肠道菌群研究中,应充分考虑粪便样品微生物的组成是否能够完全代表肠道微生物的组成。  相似文献   

6.
Elevated atmospheric CO2 increases aboveground plant growth and productivity. However, carbon dioxide-induced alterations in plant growth are also likely to affect belowground processes, including the composition of soil biota. We investigated the influence of increased atmospheric CO2on bacterial numbers and activity, and on soil microbial community composition in a pasture ecosystem under Free-Air Carbon Dioxide Enrichment (FACE). Composition of the soil microbial communities, in rhizosphere and bulk soil, under two atmospheric CO2 levels was evaluated by using phospholipid fatty acid analysis (PLFA), and total and respiring bacteria counts were determined by epifluorescence microscopy. While populations increased with elevated atmospheric CO2 in bulk soil of white clover (Trifolium repens L.), a higher atmospheric CO2 concentration did not affect total or metabolically active bacteria in bulk soil of perennial ryegrass (Lolium perenne L.). There was no effect of atmospheric CO2 on total bacteria populations per gram of rhizosphere soil. The combined effect of elevated CO2 on total root length of each species and the bacterial population in these rhizospheres, however, resulted in an 85% increase in total rhizosphere bacteria and a 170% increase in respiring rhizosphere bacteria for the two plant species, when assessed on a per unit land area basis. Differences in microbial community composition between rhizosphere and bulk soil were evident in samples from white clover, and these communities changed in response to CO2 enrichment. Results of this study indicate that changes in soil microbial activity, numbers, and community composition are likely to occur under elevated atmospheric CO2, but the extent of those changes depend on plant species and the distance that microbes are from the immediate vicinity of the plant root surface.  相似文献   

7.
木材上的微生物类群对木材的分解及其演替规律   总被引:2,自引:0,他引:2  
论述了木材上的微生物类群以及各类群在木材生物分解过程中的演替规律 ,并解释了活立木心材能够发生腐朽的原因。结果表明 :能够生长在木材上的微生物类群有木材腐朽菌、木材软腐菌、木材变色菌、污染性霉菌、细菌、放线菌等多种。这些微生物类群共同合作完成对复杂的木质有机物质的生物分解。它们按一定次序进行作用 ,在木材生物分解的不同时期显示出明显的菌种协调与演替规律。一般情况是细菌、一些半知菌、接合菌和子囊菌等先驱微生物首先侵入 ,然后草本对策的木材腐朽菌开始出现 ,最后由竞争对策或忍耐对策的木腐菌取代草本对策的木腐菌 ,这时木材的分解过程就进入稳定的发展阶段 ,最后使木材分解或腐朽。木材腐朽最终是腐殖化阶段 ,这时微生物群落被土壤习居菌如毛霉、青霉、木霉、镰刀菌及细菌与放线菌等所取代。  相似文献   

8.
黄帚橐吾(Ligularia virgaurea)是高寒草甸常见的毒杂草,被认为是指示一个地区草地植被退化的重要物种,研究其根际/非根际土壤微生物在不同海拔梯度上的群落特征具有重要意义。以甘南州高寒草甸不同海拔梯度黄帚橐吾根际/非根际土壤可培养微生物为研究对象,采用稀释涂布平板法和最大可能数法(MPN)测定了土壤微生物的数量及土壤理化因子的变化。结果表明:细菌在微生物总数中占比最大,根际微生物数量随海拔升高呈先增加后减小的变化,非根际则表现为递增的趋势,微生物功能群在根际和非根际土壤中均逐渐增加;根际土壤的微生物和功能群数量均高于非根际土壤。RDA分析发现,土壤温度、有机碳、电导率、pH、全氮、全磷、速效氮及脲酶对根际/非根际土壤微生物数量及功能群变化影响较大。通径分析可知:根际土壤中,细菌和真菌受速效氮和有机碳影响较大,放线菌主要受土壤温度和电导率的影响;根际土壤固氮菌和氨化细菌决策系数速效氮 > 有机碳 > 全氮;根际和非根际土壤中硝化细菌的影响因子各不相同,根际土壤决策系数最大和最小分别为全磷和全氮,非根际则是pH和脲酶。  相似文献   

9.
Predominance of gram-negative bacteria belong ing to the class Gammaproteobacteria on the intestinal mucosa of pike was determined. The morphophysiological features of the isolated microorganisms suggest that they belong to symbiotic intestinal microflora. The morphological characteristics of the intestinal symbiotic microflora of pike include the formation of the capsule, pseudovacuoles, and spheroplastic forms of cells. The bacteria that were found can produce hydrolytic enzymes and possess persistence properties. The morphophysiological features that were found contribute to the adaptation of bacteria to environmental conditions and indicate that the intestinal microflora offish is autochthonous.  相似文献   

10.
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.  相似文献   

11.
为探究不同积累型小麦品种对根际微生物群落结构及功能多样性的影响,以镉低积累型小麦济麦22和镉高积累型小麦冀5265为研究材料,采用分离培养法和Biolog-Eco微平板法分析根际细菌数量、可培养优势群落结构以及微生物群落功能多样性。结果表明:污染土壤济麦22根际总细菌数量和抗Cd细菌数量均显著高于冀5265,而非污染土壤中两品种间无差异。污染土济麦22根际发现较多产脲酶和高镉抗性菌株(200 mg/L)。污染土济麦22根际优势菌多为Arthrobacter sp.和Bacillus sp.,冀5265根际优势菌主要为Streptomyces sp.;非污染土济麦22与冀5265根际优势菌群相似,均以Bacillus sp.为主。Biolog试验结果表明,两个小麦品种根际微生物群落对碳源的利用能力存在差异,济麦22根际微生物AWCD值、Mc Intosh指数、Shannon-Wiener指数、Simpson指数在污染土和无污染土中均显著高于冀5265。因此,污染土壤中不同积累型小麦品种根际微生物群落结构及功能多样性均存在差异,该研究结果对于揭示高低积累型小麦根际微生物机制提供了重要参考依...  相似文献   

12.
Chemical and physiological changes occurring in root sapwood of Norway spruce (Picea abies [L.] Karst.), when attacked by Fomes annosus (Fr.) Cke, were studied. The transformation of sapwood to reaction zone, induced by the fungal attack, implies a very sharp increase of carbonate content, correlated with higher amounts of potassium, calcium and magnesium. The buffer capacity of the reaction zone is strong, especially in the pH range 6–9. The high peroxidase activity in the rays of the sapwood is almost totally absent in the reaction zone, probably due to inactivating phenolic compounds. o-Diphenol oxidase was detectable only in the presence of microorganisms. p-Diphenol oxidase was active in connection with decaying wood but not in the reaction zone.  相似文献   

13.
The human gut harbours a wide range of bacterial communities that play key roles in supplying nutrients and energy to the host through anaerobic fermentation of dietary components and host secretions. This fermentative process involves different functional groups of microorganisms linked in a trophic chain. Although the diversity of the intestinal microbiota has been studied extensively using molecular techniques, the functional aspects of this biodiversity remain mostly unexplored. The aim of the present work was to enumerate the principal metabolic groups of microorganisms involved in the fermentative process in the gut of healthy humans. These functional groups of microorganisms were quantified by a cultural approach, while the taxonomic composition of the microbiota was assessed by in situ hybridization on the same faecal samples. The functional groups of microorganisms that predominated in the gut were the polysaccharide-degrading populations involved in the breakdown of the most readily available exogenous and endogenous substrates and the predominant butyrate-producing species. Most of the functional groups of microorganisms studied appeared to be present at rather similar levels in all healthy volunteers, suggesting that optimal numbers of these various bacterial groups are crucial for efficient gut fermentation, as well as for host nutrition and health. Significant interindividual differences were, however, confirmed with respect to the numbers of methanogenic archaea, filter paper-degrading and acetogenic bacteria and the products formed by lactate-utilizing bacteria.  相似文献   

14.
以我国北方大面积发生的入侵植物黄顶菊为研究对象,对黄顶菊根际土壤中可培养的主要功能细菌进行了分离筛选,通过rep-PCR聚类和多样性分析研究了其群落结构的变化,并利用16S rRNA序列比对,对主要优势菌群进行鉴定.结果表明: 相对于本地植物万寿菊和空白对照,黄顶菊显著增加了根际土壤中固氮菌、有机磷细菌、无机磷细菌和钾细菌的数量.rep-PCR分析显示,黄顶菊根际4种功能细菌的种群结构与本地植物和对照相比有显著差异,3种土壤中相同的聚类群极少.多样性分析表明,黄顶菊根际微生物物种多样性更加丰富,群落结构更加复杂,优势种群比较明显,生态多样性较高.对从3种土壤中分离得到的主要优势菌群的鉴定结果也进一步证明了这一结论.研究结果为阐明黄顶菊入侵的微生态机制提供了理论基础.  相似文献   

15.
贺兰山不同海拔植被下土壤微生物群落结构特征   总被引:3,自引:1,他引:2  
为明确海拔变化对干旱区山地森林土壤微生物群落的影响,揭示环境因子改变后土壤微生物群落结构特征及影响因素。对贺兰山5个海拔梯度土壤理化性质进行测定,同时采用磷酸脂肪酸(PLFA)图谱法分析土壤微生物群落组成,通过主成分分析、冗余分析(RDA)探究土壤理化性质与土壤微生物群落相对丰度之间的相关关系。结果表明:土壤养分含量在不同海拔之间差异性显著(P<0.05),土壤有机碳和全氮含量随海拔的升高而升高,全磷含量随海拔升高先升高再降低再升高;土壤微生物量随海拔升高先升高后降低,土壤微生物的相对丰度在不同海拔之间存在差异(P<0.05);主成分分析表明,与第1主成分相关性较强的微生物类群为革兰氏阳性细菌(G~+)、革兰氏阴性细菌(G~-)和真菌;与第2主成分相关性较强的微生物类群为放线菌、原生动物和非特异性细菌。非特异性细菌和真菌与各土壤因子之间均有显著相关关系,而放线菌、G~+和G~-与各土壤因子相关性较弱,原生动物与土壤全磷含量的关系密切。海拔是影响特征微生物分布的重要因素,特征微生物的含量和相对丰度随海拔的升高先升高后降低,符合山地生态学中的"中部膨胀"理论。探明了贺兰山不同海...  相似文献   

16.
Screening method of microorganisms that utilized the symbiotic association between insect (Nasutitermes takasagoensis: Nt) and intestinal microorganisms was developed. The existence of desired microorganisms that grew by degrading difficult-to-degrade materials in the gut was detected using survivability of Nt as an indicator. The desired microorganisms were isolated from the survived Nt. It was thought that guts of Nt behave as continuous culture systems whereby microorganisms that cannot degrade diet components are washed out, whereas those that can degrade it are retained and concentrated in the gut. About 60% of Nt fed with phenol artificial diet (PAD) died within 7 days, while 4% of termites survived for 9 days. The structure of intestinal microorganisms of the survived Nt fed with PAD differed from the bacterial communities obtained from enrichment culture (which contained phenol) of wood-feeding Nt. Relatively high colonies (650-times) were detected in the gut of Nt fed on phenol artificial diet compared with those obtained when Nt was fed on wood. Seven denaturing gradient gel electrophoresis (DGGE) bands were detected from gut of wood-feeding Nt, whereas 11 DGGE-bands were detected from that of phenol-feeding Nt. Out of 11 DGGE-bands, 5 of them were sequenced, and bacterial species including phenol-degrading bacteria were identified.  相似文献   

17.
A biosorbent containing an association of oil-oxidizing bacteria as a main constituent was developed, in which Lessorb, a product of moss and wood thermal processing, was used as a carrier. Xeroprotectors preserving the cell viability and oil-oxidizing activity in the biosorbent on drying and after long-term storage were selected. The use of this biosorbent for cleaning oil-polluted sod-podzol soils showed a two-threefold cleanup rate acceleration at different pollution levels (8 and 24 l/m2), especially in the presence of a nitrogen-phosphate fertilizer. The biosorbent increased the populations of certain groups of soil microorganisms and the total soil biological activity.  相似文献   

18.
Plant roots interact with a wide variety of rhizospheric microorganisms, including bacteria and the symbiontic arbuscular mycorrhizal (AM) fungi. The mycorrhizal symbiosis represents a series of complex feedbacks between plant and fungus regulated by their physiology and nutrition. Despite the widespread distribution and ecological significance of AM symbiosis, little is known about the potential of AM fungi to affect plant VOC metabolism. The purpose of this study was to investigate whether colonization of plant roots by AM fungi and associated soil microorganisms affects VOC emission and content of Artemisia annua L. plants (Asteraceae). Two inoculum types were evaluated: one consisted of only an arbuscular mycorrhizal (AM) fungus species (Glomus spp.), and the other was a mixture of different Glomus species and associated soil bacteria. Inoculated plants were compared with non-inoculated plants and with plants supplemented with extra phosphorus (P) to obtain plants of the same size as mycorrhizal plants, thus excluding potentially-confounding mycorrhizal effects on shoot growth. VOC emissions of Artemisia annua plants were analyzed by leaf cuvette sampling followed by off-line measurements with pre-concentration and gas chromatography mass spectrometry (GC-MS). Measurements of CO(2) and H(2)O exchanges were conducted simultaneously. Several volatile monoterpenes were identified and characterized from leaf emissions of Artemisia annua L. by GC-MS analysis. The main components identified belong to different monoterpene structures: alpha-pinene, beta-pinene, camphor, 1,8-cineole, limonene, and artemisia ketone. A good correlation between monoterpene leaf concentration and leaf emission was found. Leaf extracts included also several sesquiterpenes. Total terpene content and emission was not affected by AM inoculation with or without bacteria, while emission of limonene and artemisia ketone was stimulated by this treatment. No differences were found among treatments for single monoterpene content, while accumulation of specific sesquiterpenes in leaves was altered in mycorrhizal plants compared to control plants. Growth conditions seemed to have mainly contributed to the outcome of the symbiosis and influenced the magnitude of the plant response. These results highlight the importance of considering the below-ground interaction between plant and soil for estimating VOC emission rates and their ecological role at multitrophic levels.  相似文献   

19.
Roots and pods of field-grown peanut (groundnut) (Arachis hypogaea L.) were sampled at the R3, R5, and R7 developmental stages and examined in comparison to root- and pod-free soil for microbial population densities to assess the geocarposphere and rhizosphere effects. G/ S (no. geocarposphere microorganisms/no. soil microorganisms) and R/S (no. rhizosphere microorganisms/no. soil microorganisms) ratios were calculated for total fungi,Asperigillus flavus, spore-forming bacilli, coryneform bacteria, fluorescent pseudomonads, and total bacteria isolated on low- and high-nutrient media. A clear geocarposphere effect was evidenced by increased population densities of bacteria and fungi associated with developing pods compared to soil. G/S and R/S ratios were generally greater than 1.0 for all groups of microorganisms except bacilli. G/S ratios were greater for total bacteria than for total fungi at two of the three sample times, suggesting that bacteria were stimulated more than fungi in the zone around developing pods. In contrast, R/S ratios, were higher for total fungi than for total bacteria at two of three sample times. The preferential association of fungi and bacteria with early developmental stages of the pod indicates that some microorganisms are particularly well adapted for colonization of the peanut geocarposphere. These microorganisms are logical candidates for evaluation as biological control candiates forA. flavus.  相似文献   

20.
通过稀释平板法和常规化学分析法, 对伊犁河谷地区3种龄级(5年、10年、15年)的速生杨欧美黑杨(Populus × euramericana)人工林的土壤微生物数量、组成和土壤养分变化进行了研究。结果表明, 3种不同林龄林地土壤微生物集中分布在10-40 cm土层, 数量和种类组成随季节变化有明显差异。随着林龄的增长, 土壤微生物总数、细菌数量减少, 真菌和放线菌数量在10年生人工林最高, 这一规律随季节变化。三大类土壤微生物的组成比例相对稳定, 不随季节变化而变化。土壤有机碳、氮含量主要集中在0-20 cm土层, 随土壤深度的增加逐渐减少, 其含量及分布受季节和土壤深度不同程度的影响。土壤有机碳含量随林龄的增长而逐渐增高, 有机氮则先减后增。相关分析表明, 土壤微生物总数与土壤有机碳呈负相关, 真菌数量与土壤有机氮呈正相关。3种林地土壤有机C/N比与土壤细菌数量/真菌数量比例一致, 说明速生杨人工林在一定生长年龄内能提高土壤的固碳能力, 改善土壤肥力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号