首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

4.

Key message

Transgenic Populus alba over-expressing a TIP aquaporin ( aqua1) showed a higher growth rate under Zn excess, suggesting that aqua1 could be involved in water homeostasis, rather than in Zn homeostasis.

Abstract

Populus is the internationally accepted model for physiological and developmental studies of tree traits under stress. In plants, aquaporins facilitate and regulate the diffusion of water, however, few poplar aquaporins have been characterized to date. In this study, we reported for the first time an in vivo characterization of Populus alba clone Villafranca transgenic plants over-expressing a TIP aquaporin (aqua1) of P. x euramericana clone I-214. An AQUA1:GFP chimeric construct, over-expressed in P. alba Villafranca clones, shows a cytoplasmic localization in roots, and it localizes in guard cells in leaves. When over-expressed in transgenic plants, aqua1 confers a higher growth rate compared to wild-type (wt) plants, without affecting chlorophyll accumulation, relative water content (RWC), and fluorescence performances, but increasing the intrinsic Transpiration Efficiency. In response to Zn (1 mM), transgenic lines did not show a significant increase in Zn accumulation as compared to wt plants, even though the over-expression of this gene confers higher tolerance in root tissues. These results suggest that, in poplar plants, this gene could be principally involved in regulation of water homeostasis and biomass production, rather than in Zn homeostasis.
  相似文献   

5.
A strain of the fungus Gliocladium roseum YMF1.00133 was found to secrete nematicidal metabolites against nematodes Panagrellus redivivus, Caenothabditis elegans and Bursaphelenchus xylophilus in experiments searching for nematicidal fungi. Through bioassay-guided fractionations, a unique trioxopiperazine alkaloid, gliocladin C (compound 1), and an alkylane resorcinol, 5-n-heneicosylresorcinol (compound 2) were obtained from the methanol extract of the fungus and determined by single-crystal X-ray analysis and spectroscopic data. In vitro immersion experiments showed that the ED50 values of compounds 1 and 2 after 24 h incubation were 15 and 30 μg/mL against C. elegans, 50 and 80 μg/mL against P. redivivus, and 200 and 180 μg/mL against B. xylophilus, respectively. The X-ray diffraction data of compound 1 and the nematicidal activity of compounds 1 and 2 were reported for the first time.  相似文献   

6.
Sphenoptera (s. str.) galkae sp. n. from North Pakistan and. S. (s. str.) jacobsonorum sp. n. from India (Jammu and Kashmir State) are described and compared with closely related species. New synonymy is established for the following taxa: S. hypocrita Mannerheim, 1837 (= S. torrida Jakovlev, 1898; S. ixion Kerremans, 1912, synn. n.), S. bodemeyeri Jakovlev, 1900 (= S. quadrata Kerremans, 1909, syn. n.), S. exoleta Jakovlev, 1908 (= S. politipennis Obenberger, 1927, syn. n.), S. obruta Kerremans, 1909 (= S. chalcosoma Obenberger, 1927; S. abbreviata hetera Obenberger, 1927, synn. n.), S. tragacanthae (Klug, 1829) (= S. maledicta Obenberger, 1920; S. cilicica Obenberger, 1927; S. rambouseki Obenberger, 1927; S. klickai Obenberger, 1927; S. corrosa Obenberger, 1927; S. satrapa Obenberger, 1927; S. syriae Obenberger, 1927; S. vavrai Obenberger, 1927, synn. n.), S. magna Gory et Laporte, 1839 (= S. alexandri Obenberger, 1927, syn. n.). Lectotypes for 74 nominal species and subspecies are designated.  相似文献   

7.
Phosphatidic acid (PA) and phytosphingosine 1-phosphate (phyto-S1P) both are lipid messengers involved in plant response to abscisic acid (ABA). Our previous data indicate that PA binds to sphingosine kinase (SPHK) and increases its phyto-S1P-producing activity. To understand the cellular and physiological functions of the PA-SPHK interaction, we isolated Arabidopsis thaliana SPHK mutants sphk1-1 and sphk2-1 and characterized them, together with phospholipase Dα1 knock-out, pldα1, in plant response to ABA. Compared with wild-type (WT) plants, the SPHK mutants and pldα1 all displayed decreased sensitivity to ABA-promoted stomatal closure. Phyto-S1P promoted stomatal closure in sphk1-1 and sphk2-1, but not in pldα1, whereas PA promoted stomatal closure in sphk1-1, sphk2-1, and pldα1. The ABA activation of PLDα1 in leaves and protoplasts was attenuated in the SPHK mutants, and the ABA activation of SPHK was reduced in pldα1. In response to ABA, the accumulation of long-chain base phosphates was decreased in pldα1, whereas PA production was decreased in SPHK mutants, compared with WT. Collectively, these results indicate that SPHK and PLDα1 act together in ABA response and that SPHK and phyto-S1P act upstream of PLDα1 and PA in mediating the ABA response. PA is involved in the activation of SPHK, and activation of PLDα1 requires SPHK activity. The data suggest that SPHK/phyto-S1P and PLDα1A are co-dependent in amplification of response to ABA, mediating stomatal closure in Arabidopsis.  相似文献   

8.
Five new compounds were isolated from Penicillium sp. Y-5-2 including an austin derivative 4, four isocoumarins 9, 11, 12, and 13, together with two known isocoumarins 8 and 10, and six known austin derivatives 1, 2, 3, 5, 6, and 7 and one phenol 14. Their structures and relative configurations were established by spectroscopic means. The absolute configurations of 4, 11, and 13 were defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. The cyclization of the pentan-2-ol pendant at C-3 in compound 13 allowed the assignment of a new 2,3,4,4a,6,10b-hexahydro-1H-benzo[c]chromene isocoumarin skeleton. New compounds 9, 11, and 13 revealed inhibitory activities against E. coli at MIC values around 32 μg/mL. The known compound 14 showed potent antibiotic activity against Staphylococcus aureus and Bacillus subtilis with MIC values 8 and 2 μg/mL, respectively, with no cytotoxicity when tested in vitro. A rapid and efficient technique for selecting antibiotic fungal strain among eight marine-derived fungi was also described.  相似文献   

9.
Three new species of dance flies (Diptera, Empididae) of the subgenus Polyblepharis Bezzi, 1909 of the genus Empis Linnaeus, 1758 are described and illustrated: E. (P.) bartakisp. n. (Kazakhstan), E. (P.) dulkeitisp. n. (Russia (Krasnoyarsk Territory)), and E. (P.) ozerovisp. n. (Kazakhstan).  相似文献   

10.

Key message

We cloned TaSdr - A1 gene, and developed a gene-specific marker for TaSdr - A1 . A QTL for germination index at the TaSdr - A1 locus was identified in the Yangxiaomai/Zhongyou 9507 RIL population.

Abstract

Pre-harvest sprouting (PHS) affects yield and end-use quality in bread wheat (Triticum aestivum L.). In the present study we found an association between the TaSdr-A1 gene and PHS tolerance in bread wheat. TaSdr-A1 on chromosome 2A was cloned using a homologous cloning approach. Sequence analysis of TaSdr-A1 revealed an SNP at position 643, with the G allele being present in genotypes with lower germination index (GI) values and A in those with higher GI. These alleles were designated as TaSdr-A1a and TaSdr-A1b, respectively. A cleaved amplified polymorphism sequence (CAPS) marker Sdr2A based on the SNP was developed, and linkage mapping and QTL analysis were conducted to confirm the association between TaSdr-A1 and seed dormancy. Sdr2A was located in a 2.9 cM interval between SSR markers Xgwm95 and Xgwm372. A QTL for GI at the TaSdr-A1 locus explained 6.6, 7.3, and 8.2 % of the phenotypic variances in a Yangxiaomai/Zhongyou 9507 RIL population grown at Beijing, Shijiazhuang, and the averaged data from the two environments, respectively. Two sets of Chinese wheat cultivars used for validating the TaSdr-A1 polymorphism and the corresponding gene-specific marker Sdr2A showed that TaSdr-A1 was significantly associated with GI. Among 29 accessions with TaSdr-A1a, 24 (82.8 %) were landraces, indicating the importance of Chinese wheat landraces as sources of PHS tolerance. This study identified a novel PHS resistance allele TaSdr-A1a mainly presented in Chinese landraces and it is likely to be the causal gene for QPhs.ccsu-2A.3, providing new information for an understanding of seed dormancy.
  相似文献   

11.
12.
Discussions concerning the composition of the genus Parendacustes Chop., in particular, its subgenus Minizacla Gor., are continued. Eleven new taxa of this subgenus are described: P. trusmadi sp. n., P. mulu sp. n., P. brevispina sp. n., P. modispina sp. n., P. longispina sp. n., P. forficula sabah subsp. n., P. doloduo sp. n., P. buton sp. n., P. pallescens sp. n., P. kendari sp. n., and P. lindu sp. n. New data on P. makassari Gor. are also provided.  相似文献   

13.
The reported structures of O-specific polysaccharides from three type strains of Shigella bacteria were corrected by modern NMR techniques. The revisions concerned the configuration of the O-glycoside linkage (S. dysenteriae type 3, structure 1), the positions of monosaccharide residue glycosylation and acetalation by pyruvic acid (S. dysenteriae type 9, structure 2), and the attachment position of the side monosaccharide chain (S. boydii type 4, structure 3).
  相似文献   

14.
A series of novel 2-(chromon-3-yl)-4,5-diphenyl-1H-imidazoles (4a-h) were synthesized by one pot condensation of substituted 3-formylchromones (1a-h), benzil (2) and ammonium acetate (3) in refluxing acetic acid at 110 °C under N2 atmosphere. Allylation of compounds 4a-h with allyl bromide in the presence of fused K2CO3 furnished N-allyl-2-(chromon-3-yl)-4,5-diphenyl-1H-imidazoles (6a-h). The synthesized compounds were characterized spectroscopically and evaluated for in vitro antimicrobial activity against various pathogenic bacterial and fungal strains by disc diffusion method. Compounds bearing electron withdrawing substituents such as bromo (4f) showed significant inhibitory activity against S. cerevisiae (MIC 1.4 μg/ml) and 4g containing chloro substituent, displayed more inhibitory potential against C. albicans (MIC 1.5), as compared to the standard drugs. Compounds 6a and 4c exhibit remarkable inhibitory potential against B. subtilis with MIC 0.98 and 1.23, respectively. The time kill assay for active compound 6a was performed by viable cell count (VCC) method to elucidate the microbicidal nature of 2-(chromon-3-yl)imidazoles. A molecular docking study of most active compounds with target ‘lanosterol 14α-demethylase’ (CYP51) was performed to unravel the mode of antifungal action.  相似文献   

15.

Main conclusion

Proteomics and functional analyses of the Arabidopsis Pseudomonas syringae pv. tomato interactions reveal that Arabidopsis nitrilases are required for plant defense and R gene-mediated resistant responses to microbial pathogens. A high-throughput in planta proteome screen has identified Arabidopsis nitrilase 2 (AtNIT2), which was de novo-induced by Pseudomonas syringae pv. tomato (Pst) infection. The AtNIT2, AtNIT3, and AtNIT4 genes, but not AtNIT1, were distinctly induced in Arabidopsis leaves by Pst infection. Notably, avirulent Pst DC3000 (avrRpt2) infection led to significant induction of AtNIT2 and AtNIT4 in leaves. Pst DC3000 and Pst DC3000 (avrRpt2) significantly grew well in leaves of nitrilase transgenic (nit2i-2) and mutant (nit1-1 and nit3-1) lines compared to the wild-type leaves. In contrast, NIT2 overexpression in nit2 mutants led to significantly high growth of the two Pst strains in leaves. The nitrilase transgenic and mutant lines exhibited enhanced susceptibility to Hyaloperonospora arabidopsidis infection. The nit2 mutation enhanced Pst DC3000 (avrRpt2) growth in salicylic acid (SA)-deficient NahG transgenic and sid2 and npr1 mutant lines. Infection with Pst DC3000 or Pst DC3000 (avrRpt2) induced lower levels of indole-3-acetic acid (IAA) in nit2i and nit2i NahG plants than in wild-type plants, but did not alter the IAA level in NahG transgenic plants. This suggests that Arabidopsis nitrilase 2 is involved in IAA signaling of defense and R gene-mediated resistance responses to Pst infection. Quantification of SA in these transgenic and mutant plants demonstrates that Arabidopsis nitrilase 2 is not required for SA-mediated defense response to the virulent Pst DC3000 but regulates SA-mediated resistance to the avirulent Pst DC3000 (avrRpt2). These results collectively suggest that Arabidopsis nitrilase genes are involved in plant defense and R gene-mediated resistant responses to microbial pathogens.
  相似文献   

16.
17.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).
Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers.
  相似文献   

18.

Key message

Using bulked segregant analysis combined with next-generation sequencing, we delimited the Brnye1 gene responsible for the stay-green trait of nye in pakchoi. Sequence analysis identified Bra019346 as the candidate gene.

Abstract

“Stay-green” refers to a plant trait whereby leaves remain green during senescence. This trait is useful in the cultivation of pakchoi (Brassica campestris L. ssp. chinensis), which is marketed as a green leaf product. This study aimed to identify the gene responsible for the stay-green trait in pakchoi. We identified a stay-green mutant in pakchoi, which we termed “nye”. Genetic analysis revealed that the stay-green trait is controlled by a single recessive gene, Brnye1. Using the BSA-seq method, a 3.0-Mb candidate region was mapped on chromosome A03, which helped us localize Brnye1 to an 81.01-kb interval between SSR markers SSRWN27 and SSRWN30 via linkage analysis in an F2 population. We identified 12 genes in this region, 11 of which were annotated based on the Brassica rapa annotation database, and one was a functionally unknown gene. An orthologous gene of the Arabidopsis gene AtNYE1, Bra019346, was identified as the potential candidate for Brnye1. Sequence analysis revealed a 40-bp insertion in the second exon of Bra019346 in nye, which generated the TAA stop codon. A candidate gene-specific Indel marker in 1561 F2 individuals showed perfect cosegregation with Brnye1 in the nye mutant. These results provide a foundation for uncovering the molecular mechanism of the stay-green trait in pakchoi.
  相似文献   

19.
Intracellular components in methyl jasmonate (MeJA) signaling remain largely unknown, to compare those in well-understood abscisic acid (ABA) signaling. We have reported that nitric oxide (NO) is a signaling component in MeJA-induced stomatal closure, as well as ABA-induced stomatal closure in the previous study. To gain further information about the role of NO in the guard cell signaling, NO production was examined in an ABA- and MeJA-insensitive Arabidopsis mutant, rcn1. Neither MeJA nor ABA induced NO production in rcn1 guard cells. Our data suggest that NO functions downstream of the branch point of MeJA and ABA signaling in Arabidopsis guard cells.Key words: abscisic acid, Arabidopsis thaliana, guard cells, methyl jasmonate, nitric oxideStomatal pores that are formed by pairs of guard cells respond to various environmental stimuli including plant hormones. Some signal components commonly function in MeJA- and ABA-induced stomatal closing signals,1 such as cytosolic alkalization, ROS generation and cytosolic free calcium ion elevation. Recently, we demonstrated that NO functions in MeJA signaling, as well as ABA signaling in guard cells.2NO production by nitric oxide synthase (NOS) and nitrate reductase (NR) plays important roles in physiological processes in plants.3,4 It has been shown that NO functions downstream of ROS production in ABA signaling in guard cells.5 NO mediates elevation of cytosolic free Ca2+ concentration ([Ca2+]cyt), inactivation of inward-rectifying K+ channels and activation of S-type anion channels,6 which are known to be key factors in MeJA- and ABA-induced stomatal closure.2,79It has been reported that ROS was not induced by MeJA and ABA in the MeJA- and ABA-insensitive mutant, rcn1 in which the regulatory subunit A of protein phosphatase 2A, RCN1, is impaired.7,10 We examined NO production induced by MeJA and ABA in rcn1 guard cells (Fig. 1). NO production by MeJA and ABA was impaired in rcn1 mutant (p = 0.87 and 0.25 for MeJA and ABA, respectively) in contrast to wild type. On the other hand, the NO donor, SNP induced stomatal closure both in wild type and rcn1 mutant (data not shown). These results are consistent with our previous results, i.e., NO is involved in both MeJA- and ABA-induced stomatal closure and functions downstream of the branching point of MeJA and ABA signaling in Arabidopsis guard cells.7 Our finding implies that protein phosphatase 2A might positively regulate NO levels in guard cells (Fig. 2).Open in a separate windowFigure 1Impairment of MeJA- and ABA-induced NO production in rcn1 guard cells. (A) Effects of MeJA (n = 10) and ABA (n = 9) on NO production in wild-type guard cells. (B) Effects of MeJA (n = 7) and ABA (n = 7) on NO production in rcn1 guard cells. The vertical scale represents the percentage of diaminofluorescein-2 diacetate (DAF-2 DA) fluorescent levels when fluorescent intensities of MeJA- or ABA-treated cells are normalized to control value taken as 100% for each experiment. Each datum was obtained from at least 30 guard cells. Error bars represent standard errors. Significance of differences between data sets was assessed by Student''s t-test analysis in this paper. We regarded differences at the level of p < 0.05 as significant.Open in a separate windowFigure 2A model of signal interaction in MeJA-induced and ABA-induced stomatal closure. Neither MeJA nor ABA induces ROS production, NO production, IKin and stomatal closure in rcn1 mutant. These results suggest that NO functions downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

20.
We investigated the effects of inbreeding and crossbreeding on the reproductive biology of two populations of fairy shrimp Streptocephalus sirindhornae from Maha Sarakham (M) and Suphan Buri (S) provinces of Thailand. Four groups of the mature fairy shrimp were experimentally mated; S × S, M × M, M × S and S × M. The data on life span, age at first spawning, number of eggs per brood and total number of eggs per female of the inbred and crossbred parent generations (P) were not significantly different. The spawning frequency and capacity of the crossbred P were significantly more productive than those of the inbred. In both populations, the majority of P had the greatest egg numbers in the 8th to 14th broods. The hatching percentages of eggs and the survival percentages of nauplii from the 10th brood of the F 1 populations were significantly higher than those of the 20th and 1st broods. The inbreeding in F 1 had no effect on hatching and survival percentages, sex ratios of males to females, average weight, body length and specific growth percentages. Our findings suggest that the inbred populations in P and F 1 were able to yield eggs similar to the crossbred populations, with similar growth, hatching and survival percentages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号