首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Early development of leg and wing primordia in the Drosophila embryo   总被引:1,自引:0,他引:1  
The development of the leg and wing primordia in the Drosophila embryo has been traced using molecular markers. Distal-less and disconnected gene expression provide molecular labels for the leg primordia throughout embryonic development, disconnected expression in the developing leg primordia depends on Distal-less activity. The leg primordia arise as discrete clusters of cells that occupy well defined positions in the embryonic ectoderm. At later stages of embryogenesis the primordia become morphologically recognizable and are intimately associated with the development of the Keilin's organs. The presumptive leg disc and the Keilin's organ appear to derive from a common primordium. Similarly the Abnormal leg pattern gene provides a molecular label for the wing and haltere primordia. The dorsal thoracic primordia appear to be of independent origin from the legs.  相似文献   

2.
Forest trees are fundamental components of our environment, mainly due to their long lifetime and important role in forest ecology. In the past, some non-native tree species and taxa from traditional breeding have induced severe environmental impacts such as biological invasion, changes in the ‘gene pool’, and spread of diseases in forestry. Genetically modified trees obtained in different research groups worldwide are particularly confronted with increased concerns regarding biosafety issues. In the light of current biosafety research worldwide, various threats facing forests and natural tree populations are evaluated in this review: biological invasions, horizontal gene transfer, vertical gene transfer and effects on other organisms. Results available from groups working in biosafety research and risk avoidance using forest trees, with emphasis on transgenic trees, are reviewed. Independent biosafety research as well as the establishment of biosafety research programs for forest trees financed by national and international authorities is now more important than ever before. Biosafety problems detected in the past clearly show the importance of a prior case-by-case evaluation of non-native species, new taxa and also genetically modified trees according to the precautionary principle before their release to avoid risks to the environment and human health.  相似文献   

3.
4.
Zinc is a micronutrient important in several biological processes including growth and development. We have limited knowledge on the impact of maternal zinc deficiency on zinc and zinc regulatory mechanisms in the developing embryo due to a lack of in vivo experimental models that allow us to directly study the effects of maternal zinc on embryonic development following implantation. To overcome this barrier, we have proposed to use zebrafish as a model organism to study the impact of zinc during development. The goal of the current study was to profile the mRNA expression of all the known zinc transporter genes in the zebrafish across embryonic and larval development and to quantify the embryonic zinc concentrations at these corresponding developmental time points. The SLC30A zinc transporter family (ZnT) and SLC39A family, Zir-,Irt-like protein (ZIP) zinc transporter proteins were profiled in zebrafish embryos at 0, 2, 6, 12, 24, 48 and 120 h post fertilization to capture expression patterns from a single cell through full development. We observed consistent embryonic zinc levels, but differential expression of several zinc transporters across development. These results suggest that zebrafish is an effective model organism to study the effects of zinc deficiency and further investigation is underway to identify possible molecular pathways that are dysregulated with maternal zinc deficiency.  相似文献   

5.
6.
The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterward through lateral root formation. Additionally, adventitious roots can be formed post‐embryonically from aerial organs. Induction of adventitious roots (ARs) forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the AR primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, e.g. are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post‐embryonic formation in cuttings.  相似文献   

7.
We have recently gained insight into a number of mechanisms governing the formation of the major axes that define the embryonic and adult plant body plan. Phenotypic analysis and molecular characterization of mutants with aberrant morphogenesis has led to a better understanding of key processes including the generation of the shape of the apical embryo, the establishment and maintenance of the radial pattern of the root, and the placement of lateral organ primordia around the shoot apical meristem.  相似文献   

8.
Sun D  Baur S  Hay ED 《Developmental biology》2000,228(2):337-349
We have previously demonstrated that epithelial-mesenchymal transformation (EMT) brings about TGF beta 3-induced confluence of craniofacial primordia that derive from the maxillary processes and give rise to the avian palate. The upper lip of the chick embryo forms by confluence of primordia also derived from the maxillary processes, but in this case, they fuse with the intermaxillary segment of the nasofrontal process. Here, we ask whether the bilateral epithelial seams formed when these primordia contact each other in vivo are removed by apoptosis (as formerly was believed to occur in developing palate) or by EMT. We found that, as is the case in the palate, the periderm of the two-layered embryonic epithelium begins to slough shortly before these primordia fuse, bringing the basal epithelial cells into close contact. We show by TUNEL staining and confirm by TEM that apoptosis occurs only in periderm. TEM reveals that basal epithelial cells contacting each other to form the midline seam produce numerous desmosomes with each other. Then, basement membrane begins to disappear, numerous filopodia extend from the basal surfaces of epithelial cells, the space between them enlarges, and the seam breaks apart, leaving mesenchymal cells in its wake. Transformation of the carboxyfluorescein (CCFSE)-labeled epithelial seam is demonstrated in vivo by detection of CCFSE bodies in mesenchymal cells that replace it. This demonstration of EMT in avian lip development lays important groundwork for understanding the causes of human cleft lip and analyzing the mechanism of action of growth factors, such as SHH and BMPs, that have been shown (J. A. Helms et al., 1997, Dev. Biol. 187, 25-35) to be involved in avian lip confluence.  相似文献   

9.
The prevalence of diabetes is growing worldwide with an increasing morbidity and mortality associated with the development of diabetes complications. Free radical production is a normal biological process that is strictly controlled and has been shown to be important in normal cellular homeostasis, and in the bodies response to pathogens. However, there are several mechanisms leading to excessive free radical production that overcome the normal protective quenching mechanisms. Studies have shown that many of the diabetes complications result from excessive free radical generation and oxidative stress, and it has been shown that chronic hyperglycemia is a potent inducer for free radical production, generated through several pathways and triggering multiple molecular mechanisms. An understanding of these processes may help us to improving our preventive or therapeutic strategies. In this review, the major molecular pathways involved in free radical generation induced by hyperglycemia are described.  相似文献   

10.
11.
O P Melekhova 《Ontogenez》1976,7(2):131-140
The localization of free radical processes and changes in their level during the common frog development have been studied by means of grafted copolymerisation and autoradiography. The maps of distribution of relative concentrations of free radicals were obtained for the beginning of cleavage, blastula, gastrula and neurula. The distinct regionalization was found in the beginning of cleavage: the concentration of the free radicals in the cortical layer and dorsal half of embryo is lower than in the central area and ventral half, resp. At the early blastula stage this regionalization is preserved in its general features. The region of embryo characterized by active free radical processes corresponds to the presumptive endo- and mesoderm in the period of inductive interaction. The possible participation of regional changes in oxidative metabolism in the fertilized egg in the determination of cytoplasmic localization of morphogenetic potencies is discussed. At the later stages there were variations observed in free radicals concentration, which are discussed as being related to the determination and morphogenesis of some rudiments of embryo. A local rise of free radicals concentration was also found out in the eye rudiment just before the onset of its components differentiation.  相似文献   

12.
13.
14.
15.
《Insect Biochemistry》1987,17(1):227-236
Ecdysteroid levels in the separated embryo and yolk fractions of Schistocerca gregaria eggs have been determined at each of the developmental stages. The major hormones present both in the free and conjugated state are ecdysone, 20-hydroxyecdysone and 2-deoxyecdysone. At the beginning of embryonic development the ecdysteroids occur only in the yolk whereas, after blastokinesis, they are found in the embryo. The levels of conjugates fall during embryonic development, whereas a decrease of free hormone titres in early embryogenesis is followed by a marked increase in late embryos (stage 26 and 28). The possible role of ecdysteroids in relation to the morphogenetic processes of egg development and the site of origin of the free ecdysteroid peaks are discussed.  相似文献   

16.
In plants, genetic mechanisms leading to shoot and root formation are almost unknown. Because basic body organization of such organisms is established during embryogenesis, induction and isolation of embryonic mutants is a promising approach to the study of plant development. The study of available embryonic mutants of rice indicates the existence of three major developmental processes taking place during embryogenesis before morphogenetic events start: determination of organ differentiation, positional regulation of organs and size regulation of the embryo. The consideration of specific rice mutants supports the existence of two types of mutations in each regulatory process, one affecting the embryo as a whole and the second concerning more restricted embryonal regions. A hierarchical type of control of rice embryogenesis is suggested.  相似文献   

17.
Teeth develop in the mammalian embryo via a series of interactions between odontogenic epithelium and neural crest-derived ectomesenchyme of the early jaw primordia. The molecular interactions required to generate a tooth are mediated by families of signalling molecules, which often act reiteratively in both a temporal and spatial manner. Whilst considerable information is now available on how these molecules interact to produce an individual tooth, much less is known about the processes that control overall tooth number within the dentition. However, a number of mouse models are now starting to provide some insight into the mechanisms that achieve this. In particular, co-ordinated restriction of signalling molecule activity is important in ensuring appropriate tooth number and there are different requirements for this suppression in epithelial and mesenchymal tissues, both along different axes of individual jaws and between the jaws themselves. There are a number of fundamental mechanisms that facilitate supernumerary tooth formation in these mice. A key process appears to be the early death of vestigial tooth primordia present in the embryo, achieved through the suppression of Shh signalling within these early teeth. However, restriction of WNT signalling is also important in controlling tooth number, with increased transduction being capable of generating multiple tooth buds from the oral epithelium or existing teeth themselves, in both embryonic and adult tissues. Indeed, uncontrolled activity of this pathway can lead to the formation of odontogenic tumours containing multiple odontogenic tissues and poorly formed teeth. Finally, disrupted patterning along the buccal–lingual aspect of the jaws can produce extra teeth directly from the oral epithelium in a duplicated row. Together, all of these findings have relevance for human populations, where supernumerary teeth are seen in association with both the primary and permanent dentitions. Moreover, they are also providing insight into how successional teeth form in both embryonic and post-natal tissues of the jaws.  相似文献   

18.
Organisms, including humans, could be exposed to hypomagnetic fields (HMFs, intensity <5 μT), e.g. in some artificially shielded magnetic environments and during deep-space flights. Previous studies have demonstrated that HMF exposure could have negative effects on the central nervous system and embryonic development in many animals. However, the underlying mechanisms remain unknown. Studies have revealed that HMFs affect cellular reactive oxygen species (ROS) levels and thereby alter physiological and biological processes in organisms. ROS, the major component of highly active free radicals, which are ubiquitous in biological systems, were hypothesized to be the candidate signaling molecules that regulate diverse physiological processes in response to changes in magnetic fields. Here, we summarize the recent advances in the study of HMF-induced negative effects on the central nervous system and early embryonic development in animals, focusing on cellular ROS and their role in response to HMFs. Furthermore, we discuss the potential mechanism through which HMFs regulate ROS levels in cells. © 2020 Bioelectromagnetics Society  相似文献   

19.
Aminopeptidase N during the ontogeny of the chick   总被引:1,自引:0,他引:1  
Little is known about the production and function of metallopeptidases in embryonic development. One such enzyme, aminopeptidase N (APN), is present in several epithelia, the brain and angiogenic vessels in adults. APN promotes vascular growth and endothelial cell proliferation in physiological and pathological models of angiogenesis. However, its possible role in embryonic angiogenesis or other developmental processes is unknown. Its expression profile in the early phase of embryonic development has not been reported. We report here the expression of this enzyme during the early development of the chick embryo, using complementary techniques for monitoring APN mRNA, protein, and enzymatic activity. We detected APN in the embryo as early as gastrulation. In addition to the known sites of APN production identified in both adults and rat fetuses toward the end of gestation, APN was found in unexpected sites, such as the primitive streak, the dorsal folds of the neural tube, the somites, and the primordia of several organs. APN was present mostly in the cardiovascular compartment during the first 13 days of incubation, and in the hematopoietic compartment (yolk sac and aorta-gonad-mesonephros region) early in development. This study provides clues as to the possible role of APN in embryonic development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号