首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sleep deprivation (SD) is associated with cognitive deficits. It was found to affect the hippocampus region of the brain by impairing memory formation. This impairment is suggested to be caused by elevation in oxidative stress in the body, including the brain during SD. It was hypothesized that the methanolic extract of the fruits of Arbutus andrachne L. (Ericaceae) will prevent chronic SD-induced impairment of hippocampal memory via its antioxidative properties. The methanolic extract of the fruits of A. andrachne was evaluated for its beneficial properties to reverse SD-induced cognitive impairment in rats. Animals were sleep deprived for 8 weeks using a multiple platform model. The extract was administered i.p. at three doses (50, 200, and 500 mg/kg). Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). In addition, the hippocampus was dissected to analyze the following oxidative stress markers: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), and catalase. Chronic SD impaired short- and long-term memories (P < 0.05). Treatment of animals with A. andrachne fruit extract at all doses prevented long-term memory impairment induced by SD while such treatment prevented short-term memory impairment only at 200 and 500 mg/kg dose levels. Moreover, A. andrachne fruit extract normalized the reduction in the hippocampus GSH/GSSG ratio and activity of GPx, and catalase (P < 0.05) induced by chronic sleep deprivation. Chronic sleep deprivation impaired both short- and long-term memory formation, while methanolic extract of A. andrachne fruits reversed this impairment, probably through normalizing oxidative stress in the hippocampus.  相似文献   

4.
The study was conducted to evaluate the effects of chromium-loaded chitosan nanoparticles (Cr-CNP) on glucose transporter 4 (GLUT4), relevant messenger RNA (mRNA), and proteins involved in phosphatidylinositol 3-kinase (PI3K), Akt2-kinase, and AMP-activated protein kinase (AMPK) of skeletal muscles in finishing pigs. A total of 120 crossbred barrows (BW 65.00 ± 1.26 kg) were randomly allotted to four dietary treatments, with three pens per treatment and 10 pigs per pen. Pigs were fed the basal diet supplemented with 0, 100, 200, or 400 μg/kg of Cr from Cr-CNP for 35 days. After the feeding trials, 24 pigs were slaughtered to collect longissimus muscle samples for analysis. Cr-CNP supplementation increased GLUT4 messenger RNA (mRNA) (quadratically, P < 0.01) and total and plasma membrane GLUT4 protein contents (linearly and quadratically, P < 0.001) in skeletal muscles. Glycogen synthase kinase 3β (GSK-3β) mRNA was decreased linearly (P < 0.001) and quadratically (P < 0.001). Supplemental Cr-CNP increased insulin receptor (InsR) mRNA quadratically (P < 0.01), Akt2 total protein level linearly (P < 0.01) and quadratically (P < 0.001), and PI3K total protein was increased significantly (P < 0.05) in 200 μg/kg treatment group. The mRNA of AMPK subunit gamma-3 (PRKAG3) and protein of AMPKα1 was significantly increased (P < 0.001) with the addition of Cr-CNP. The results indicate that dietary supplementation of Cr-CNP may promote glucose uptake by leading to recruitment of GLUT4 to the plasma membrane in skeletal muscles, and these actions may be associated with the insulin signal transduction and AMPK.  相似文献   

5.
The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lβ (IL-1β) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the mRNA expression of interferon-γ (IFN-γ), but increased the mRNA expression of transforming growth factor-β (TGF-β), in the jejunum mucosa of piglets, when compared to those in the control (P < 0.05). In summary, supplemental ZnO was effective on the prevention of post-weaning diarrhea (PWD) in weaned piglets and showed comparative growth-promoting effect on in-feed antibiotics, probably by the mechanism of improvement of the antioxidant capacity, restoration of intestinal barrier function and development, and modulation of immune functions.  相似文献   

6.

Background

The value of apparent diffusion coefficient (ADC) values and quantitative parameters (Ktrans, Kep, Ve) in detecting prognostic factor at 3.0 Tesla remains unclear, especially in predicting prognosis of breast cancer.

Methods

A total of 151 patients with IDC underwent breast DCE-MRI and DWI-MRI at 3.0 Tesla following surgery. The ADC values were acquired with b values of 0 and 1000?s/mm2. The relationship between ADC values or DCE-MRI quantitative parameters and size, histologic grade (HG), lymph node metastasis (LNM), ER, PR, and Ki67 was evaluated. The predictive values of ADC, Ktrans, Kep, and Ve to prognosis of IDC were assessed.

Results

ADC value was positively related to size (P?=?0.04) and HER2 (P?=?0.046) expression and negatively related to ER (P?=?0.012) and PR (P?<?0.001) expression. Ktrans value has positive correlation with size (P?<?0.001), HG (P?<?0.001), LNM (P?<?0.001), HER2 (P?=?0.007), and Ki67 (P?<?0.001) expression and negative correlation with ER (P?<?0.001) and PR (P?<?0.001) expression. Kep value was positively related to size (P?<?0.001) and negatively related to ER (P?<?0.001) and PR (P?<?0.001) expression. Ve value was negatively related to HER2 expression (P?=?0.004). The Cox hazard ratio (HR) of ADC, Ktrans, Kep, and Ve values on survival was 5.26 (P?=?0.093), 1.081 (P?=?0.002), 1.006 (P?=?0.941), and 0.883 (P?=?0.926), respectively.

Conclusions

Ktrans value was a best predictive indicator of HG, LNM, ER, PR, and Ki67 expression, and ADC value was the best predictive indicator of HER2. Preoperative use of the 3.0 Tesla could provide important information to determine the optimal treatment plan.
  相似文献   

7.
The aim of the present study was to explore the role of lncRNA ANRIL in the pathogenesis of ischemic stroke (IS) and coronary artery disease (CAD) and to determine the association between ANRIL variants and the genetic susceptibility of IS and CAD in the Chinese Han population. A genetic association study including 550 IS patients, 550 CAD patients, and 550 healthy controls was conducted. The expression levels of lncRNA ANRIL, CDKN2A, and CDKN2B were detected using qRT-PCR. Genotyping was performed by Sequenom MassARRAY on an Agena platform. Our study showed that IS patients had an increased lncRNA ANRIL expression (P?=?0.002) and a decreased CDKN2A expression (P?<?0.001) compared with normal controls. A significant difference with regard to the genotype distribution of rs2383207 was found between male IS patients and controls (P?=?0.011). The minor allele of rs2383207 significantly increased the IS risk under a recessive model (OR?=?1.52, 95% CI?=?1.05–2.21, P?=?0.027). The minor allele of rs1333049 was significantly associated with the risk of IS among the male patients under a recessive model (OR?=?1.56, 95% CI?=?1.04–2.35, P?=?0.031). However, no significant association was found between the ANRIL variants and the risk of CAD (all P?>?0.050). In addition, we found a decreased lncRNA ANRIL expression in IS patients who carried the GG genotype of rs1333049 compared with IS patients who carried the CC or CG genotype (P?=?0.041). In summary, we found that IS patients had an increased lncRNA ANRIL expression and a decreased CDKN2A expression compared with the controls, which might play an impellent role in pathological processes of IS. The ANRIL variants rs2383207 and rs1333049 were significantly associated with the risk of IS among males but not females in the Chinese Han population.  相似文献   

8.
Recently, more and more studies indicate that iron overload would cause osteopenia or osteoporosis. However, the molecular mechanism of it remains unclear. Moreover, very little is known about the iron metabolism in bone tissue at present. Therefore, the mRNA expression of iron-regulators, transferrin receptor1 (Tfr1), divalent metal transporter1 (Dmt1?+?IRE and Dmt1???IRE), ferritin (FtH and FtL), and ferroportin1 (Ireg1), and the localization of ferroportin1 protein were examined in the bone tissue of rats. In addition, the mRNA expression of each gene was compared between groups of rats with and without iron overload. The results showed that ferroportin1 protein was localized in the cytoplasm of osteoblast, osteocyte, chondrocyte and osteoclast of rats’ femur. The six iron-regulatory genes, Tfr1, ferritin (FtH and FtL), (Dmt1?+?IRE and Dmt1???IRE) and ferroportin1 (Ireg1), were found in femurs of rats. In addition, significantly up-regulated expression of FtH and FtL mRNA, and markedly down-regulated expression of Tfr1, Dmt1?+?IRE and Ireg1 mRNA, were observed in the iron overload group compared with the control group. The result indicates that ferroportin1 protein is localized in the cytoplasm of bone cells of rats. Tfr1, Dmt1, ferritin and ferroportin1 exist in bone tissue of rats, and they may be involved in the pathological process of iron overload-induced bone lesion.  相似文献   

9.
This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.  相似文献   

10.
Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.  相似文献   

11.
Vascular dementia (VaD) is caused by the reduction of blood supply by vessel occlusion and is characterized by progressive cognitive decline. VaD incidence has been growing due to the aging population, placing greater strain on social and economic resources. However, the pathological mechanisms underlying VaD remain unclear. Many studies have used the bilateral common carotid artery occlusion (BCCAO) animal model to investigate potential therapeutics for VaD. In this study, we investigated whether bee venom (BV) improves cognitive function and reduces neuroinflammation in the hippocampus of BCCAO animals. Animals were randomly divided into three groups: a sham group (n = 15), BCCAO control group (n = 15), and BV-treated BCCAO group (n = 15). BCCAO animals were treated with 0.1 μg/g BV at ST36 (“Joksamli” acupoint) four times every other day. In order to investigate the effect of BV treatment on cognitive function, we performed a Y-maze test. In order to uncover any potential relationship between these results and neuroinflammation, we also performed Western blotting in the BCCAO group. Animals that had been treated with BV showed an improved cognitive function and a reduced expression of neuroinflammatory proteins in the hippocampus, including Iba-1, TLR4, CD14, and TNF-α. Furthermore, we demonstrated that BV treatment increased pERK and BDNF in the hippocampus. The present study thus underlines the neuroprotective effect of BV treatment against BCCAO-induced cognitive impairment and neuroinflammation. Our findings suggest that BV may be an effective complementary treatment for VaD, as it may improve cognitive function and attenuate neuroinflammation associated with dementia.  相似文献   

12.
Diabetes mellitus (DM) induces a variable degree of muscle sarcopenia, which may be related to protein degradation and to the expression of both E3 ubiquitin ligases and some specific microRNAs (miRNAs). The present study investigated the effect of diabetes and acute muscle contraction upon the TRIM63 and FBXO32 expression as well as the potential involvement of some miRNAs. Diabetes was induced by streptozotocin and studied after 30 days. Soleus muscles were harvested, stimulated to contract in vitro for twitch tension analysis (0.5 Hz), 30 min later for tetanic analysis (100 Hz), and 30 min later were frozen. TRIM63 and FBXO32 proteins were quantified by western blotting; Trim63 mRNA, Fbxo32 mRNA, miR-1-3p, miR-29a-3p, miR-29b-3p, miR-133a-3p, and miR-133b-3p were quantified by qPCR. Diabetes induced sarcopenia by decreasing (P < 0.05) muscle weight/tibia length index, maximum tetanic contraction and relaxation rates, and absolute twitch and tetanic forces (P < 0.05). Diabetes decreased (P < 0.05) the Trim63 and Fbxo32 mRNAs (30%) and respective proteins (60%), and increased (P < 0.01) the miR-29b-3p (2.5-fold). In muscle from diabetic rats, acute contractile stimulus increased TRIM63 protein, miR-1-3p, miR-29a-3p, and miR-133a/b-3p, but decreased miR-29b-3p (P < 0.05). Independent of the metabolic condition, after muscle contraction, both TRIM63 and FBXO32 proteins correlated significantly with miR-1-3p, miR-29a/b-3p, and miR-133a/b-3p. All diabetes-induced regulations were reversed by insulin treatment. Concluding, the results depict that muscle wasting in long-term insulinopenic condition may not be accompanied by increased proteolysis, pointing out the protein synthesis as an important modulator of muscle sarcopenia in DM.  相似文献   

13.
The mechanisms by which exendin-4 and selenium exert their antidiabetic actions are still unclear. Here, we investigated the effects of exendin-4 or selenium administration on the expression of glucagon-like peptide-1 receptor (GLP-1R), insulin receptor substrate-1 (IRS-1), and preproinsulin in the pancreas of diabetic rats. Diabetes was induced by streptozotocin administration. Diabetic rats were injected intraperitoneally with 0.03 μg exendin-4/kg body weight/daily or treated with 5 ppm selenium in drinking water for a period of 4 weeks. GLP-1R and IRS-1 levels were decreased while the level of preproinsulin messenger RNA (mRNA) was increased in the pancreas of diabetic untreated rats, as compared to that in control rats. Treatment of diabetic rats with exendin-4 increased protein and mRNA levels of GLP-1R, and IRS-1, and the mRNA level of preproinsulin in the pancreas, as compared to their levels in diabetic untreated rats. Selenium treatment of diabetic rats increased the pancreatic mRNA levels of GLP-1R, IRS-1, and preproinsulin. Exendin-4 or selenium treatment of diabetic rats also increased the numbers of pancreatic islets and GLP-1R molecules in the pancreas. Therefore, exendin-4 and selenium may exert their antidiabetic effects by increasing GLP-1R, IRS-1, and preproinsulin expression in the pancreas and by increasing the number of pancreatic islets.  相似文献   

14.
The programmed cell death (or apoptosis) plays an important role both in developing and mature brains. Multiple data indicate the involvement of processes of apoptosis in mechanisms of different psychopathologies. At the same time, nothing is known about the role of apoptosis in the regulation of genetically defined aggression. In the present work, the expression of the genes that encode main pro- and antiapoptotic BAX and BCL-XL proteins, as well as caspase 3 (the main effector of apoptosis), in different brain structures of rats that were selected on a high aggression towards human (or its absence) was studied. A significant increase in the expression of the gene encoding caspase 3 was detected in the hypothalamus. This was accompanied by a significant decrease in the expression of proapoptotic Bax gene in the hippocampus and increase in mRNA level of antiapoptotic Bcl-xl gene in the raphe nuclei area of midbrain in highly aggressive rats. An increase in the ratio Bcl-xl: Bax was found in the midbrain and amygdala; a trend towards an increase in the ratio was also found in hippocampus of aggressive animals compared to tame animals. Thus, we demonstrated that genetically defined fear-induced aggression is associated with significant changes in the genetic control of apoptosis in the brain. It is assumed that an increase in the Bcl-xl gene expression (accompanied by a decrease in the Bax gene expression) can indicate an increase in the threshold of neuronal apoptosis in highly aggressive rats.  相似文献   

15.
Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague–Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.  相似文献   

16.
17.

Objectives

We have examined dynamic changes of histone H3 lysine 9 following trimethylation (H3K9me3), the mRNA expression levels of SUV39H1 and SUV39H2 in bovine oocytes and the role in the development of in vitro fertilization (IVF) pre-implantation embryos.

Results

There were strong H3K9me3 signals in germinal vesicle (GV) oocytes but no signals in MII oocytes. H3K9me3 signals were maintained during IVF pre-implantation embryo development. SUV39H1 and SUV39H2 showed significantly higher mRNA expression levels in GV oocytes than MII oocytes (P < 0.01). SUV39H1 showed high mRNA expression level in two-cell embryos, however, SUV39H2 showed high mRNA expression level in four-cell embryos. In other development stage, SUV39H1 and SUV39H2 showed low expression levels.

Conclusion

Bovine IVF pre-implantation embryos maintain strong H3K9me3 signals and SUV39H1 and SUV39H2 are highly expressed at the early development stage of pre-implantation embryos.
  相似文献   

18.
Mesenchymal stem cells (MSCs) are used for tissue regeneration in several pathological conditions, including autoimmune diseases. However, the optimal sources and culture requirements for these cells are still under investigation. Here, we compared mRNA expression in dermal MSCs (DMSCs) at passage (P) 3 and P5 to provide a reference for future studies related to DMSCs expansion. In normal DMSCs, the expression of three of eight genes associated with basic cellular activity were different at P5 compared to that at P3: PLCB4 and SYTL2 were upregulated by 4.30- and 6.42-fold, respectively (P < 0.05), whereas SATB2 was downregulated by 39.25-fold (P < 0.05). At the same time, genes associated with proliferation, differentiation, inflammation, and apoptosis were expressed at similar levels at P3 and P5 (P > 0.05). In contrast, in DMSCs isolated from psoriatic patients we observed differential expression of three inflammation-associated genes at P5 compared to P3; thus IL6, IL8, and CXCL6 mRNA levels were upregulated by 16.02-, 31.15-, and 15.04-fold, respectively. Our results indicate that normal and psoriatic DMSCs showed different expression patterns for genes related to inflammation and basic cell activity at P3 and P5, whereas those for genes linked to proliferation, differentiation, and apoptosis were mostly similar.  相似文献   

19.
We investigated whether maternal over-nutrition during pregnancy and lactation affects the offspring’s lipid metabolism at weaning by assessing liver lipid metabolic gene expressions and analysing its mechanisms on the development of metabolic abnormalities. Female Sprague–Dawley rats were fed with standard chow diet (CON) or high-fat diet (HFD) for 8 weeks, and then continued feeding during gestation and lactation. The offspring whose dams were fed with HFD had a lower birth weight but an increased body weight with impaired glucose tolerance, higher serum cholesterol, and hepatic steatosis at weaning. Microarray analyses showed that there were 120 genes differently expressed between the two groups. We further verified the results by qRT-PCR. Significant increase of the lipogenesis (Me1, Scd1) gene expression was found in HFD (P<0.05), and up-regulated expression of genes (PPAR-α, Cpt1α, Ehhadh) involved in β-oxidation was also observed (P<0.05), but the Acsl3 gene was down-regulated (P<0.05). Maternal over-nutrition could not only primarily induce lipogenesis, but also promote lipolysis through an oxidation pathway as compensation, eventually leading to an increased body weight, impaired glucose tolerance, elevated serum cholesterol and hepatic steatosis at weaning. This finding may provide some evidence for a healthy maternal diet in order to reduce the risk of metabolic diseases in the early life of the offspring.  相似文献   

20.
The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号