首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green tea has attracted great interest as a cancer prevention agent. Interactions of tea polyphenols with serum albumin may influence the efficacy of drugs. The interactions of (–)-epigallocatechin-3-gallate (EGCG), (–)-epicatechin-3-gallate (ECG), and tegafur (TF) alone or in combination with human serum albumin (HSA) at pH 7.4 and different temperatures were investigated by spectroscopic methods, isothermal titration calorimetry (ITC), and molecular docking. The binding affinities to HSA were ranked in the order of EGCG?>?ECG?>?TF, and the interactions were spontaneous and exothermic. Ternary system studies showed that the presence of one component hindered the binding of another component to HSA. The secondary structures of HSA were slightly altered in the presence of the ligands. Site marking experiments and molecular docking showed that EGCG and ECG mainly bound to subdomain IIA and ΙΙΙA while TF bound to subdomain ΙΙA and ΙB. Results indicated that the existence of ECG and EGCG would influence the binding of TF to HSA and can increase the free concentration of TF. Obtained results would provide beneficial information about possible interference upon simultaneous co-administration of the tea components and drugs.

Communicated by Ramaswamy H. Sarma  相似文献   


2.
The in vitro binding of α-tocopherol to microsomes of lung, liver, heart and brain of the rat was studied with the insoluble tocopherol ligand presented as a complex with bovine serum albumin. Under these conditions, all microsomes showed nonsaturable binding of α-tocopherol and the amount bound to microsomes was linearly proportional to the concentration of albumin-complexed tocopherol. Increasing the amount of α-tocopherol bound to microsomes in this manner reduced the extent of lipid peroxidation induced by added ferrous iron. The apparent affinities of the microsomes for α-tocopherol, as indicated by the amount bound at a given concentration of albumin-complexed tocopherol, decreased in the order brain > liver ≈ heart > lung. The differences in affinity did not correlate with total fatty acid content (r = − 0.39), total unsaturated fatty acid content (r = − 0.26), or with the content of fatty acids containing two or more double bonds (r = − 0.01). A high positive correlation was found with the content of fatty acids containing three or more double bonds (r = + 0.96). Since lung microsomes contain approx. 6-times the tocopherol levels of liver and brain and about twice that of heart microsomes, these results show that the in vivo levels of microsomal tocopherol do not reflect microsomal affinity for this biological antioxidant.  相似文献   

3.
The interaction between myricetin and dihydromyricetin with trypsin, α-chymotrypsin and lysozyme was investigated using multispectral and molecular docking methods. The results of fluorescence quenching revealed that myricetin and dihydromyricetin could quench the intrinsic fluorescence of three different proteinases through a static quenching procedure. The binding constant and number of binding sites at different temperatures were measured. The thermodynamic parameters obtained at different temperatures showed van der Waals interactions and hydrogen bonds played the main roles in the interaction of myricetin with trypsin and lysozyme, hydrophobic force was dominant both in myricetin with α-chymotrypsin interaction and dihydromyricetin with trypsin and lysozyme interaction, as for the electrostatic forces, it was mainly the driving force in dihydromyricetin binding to α-chymotrypsin. There was non-radiative energy transfer between three proteinases and myricetin or dihydromyricetin with high probability. The microenvironment of trypsin, α-chymotrypsin and lysozyme is changed. The docking studies revealed that myricetin and dihydromyricetin entered the hydrophobic cavity of three proteinases and formed hydrogen bonds. The binding affinity of myricetin or dihydromyricetin is different with the trypsin, α-chymotrypsin and lysozyme due to the different molecular structure.  相似文献   

4.
Several esters of 4-methylumbelliferone and 2-naphthol were synthesized and examined as possible spectrofluorimetric titrants for bovine alpha-chymotrypsin, trypsin, thrombin, Factor Xa and for subtilisin Novo. 4-Methylumbelliferyl p-guanidinobenzoate hydrochloride (MUGB) is a satisfactory titrant for alpha- and beta-trypsin, thrombin and Factor Xa and 4-methylumbelliferyl p-(NNN-trimethylammonium)cinnamate (MUTMAC) is a good titrant for alpha-chymotrypsin. The amount of enzyme used for spectrofluorimetric titration is 0.02-3.00nmol and the amount of 4-methylumbelliferone liberated is independent of the concentration of titrant and stoicheiometrically equal to the amount of enzyme used. Results obtained with MUGB and MUTMAC have been checked by spectrophotometric titration with p'-nitrophenyl p-guanidinobenzoate hydrochloride and p-nitrophenyl N(2)-acetyl-N(1)-benzylcarbazate respectively. p-Nitrophenyl N(2)-acetyl-N(1)-(9-anthrylmethyl)carbazate has been synthesized; it did not react with alpha-chymotrypsin. A satisfactory spectrofluorimetric titrant for subtilisin Novo was not discovered.  相似文献   

5.
The mutual arrangement of a phospholipid molecule containing a peroxyl radical and a molecule of membrane-acting antioxidant α-tocopherol (vitamin E) in the lipid bilayer has been studied by molecular dynamics simulation. The geometry of molecules in the membrane is revealed at which the hydrogen atom can be transferred from the exocyclic hydroxyl of α-tocopherol to the peroxyl lipid radical. It is shown that, under equilibrium conditions, the peroxidized fatty acid segment rises nearer to the polar surface of the membrane, while α-tocopherol submerges into the hydrophobic part of the lipid bilayer.  相似文献   

6.
1. Specific lipoproteins binding alpha-tocopherol but not its known metabolites have been isolated and identified from cytosol of rat intestinal mucosa and from serum. 2. A timestudy of the appearance of the orally administered alpha-[(3)H]tocopherol with these lipoproteins indicates that very-low-density lipoprotein of serum acts as a carrier of the vitamin. 3. The involvement of the mucosal lipoprotein in the absorption of the vitamin from the intestine has been inferred from observations on the amounts of alpha-tocopherol in serum of orotic acid-fed rats where release of lipoproteins from the liver to serum is completely inhibited. A considerable decrease in the association of alpha-tocopherol with serum very-low-density lipoprotein under this condition is interpreted to mean that serum lipoproteins are limiting factors for the transport of the vitamin across the intestine and that this is possibly effected by exchange of alpha-tocopherol between serum very-low-density lipoprotein and mucosal lipoprotein.  相似文献   

7.
Retinoid X receptors (RXRα, β and γ) are recently known to be cancer chemotherapies targets. The ligand binding domains of RXRs have been crystallized, but the information of RXRγ ligand binding site is not yet available due to the lack of liganded complex. A thorough understanding of the ligand binding sites is essential to study RXRs and may result in cancer therapeutic breakthrough. Thus we aimed to study the RXRγ ligand binding site and find out the differences between the three subtypes. Alignment and molecular simulation were carried out for identifying the RXRγ ligand binding site, characterizing the RXRγ ligand binding mode and comparing the three RXRs. The result has indicated that the RXRγ ligand binding site is defined by helices H5, H10, β-sheet s1 and the end loop. Besides hydrophobic interactions, the ligand 9-cis retinoic acid interacts with RXRγ through a hydrogen bond with Ala106, a salt bridge with Arg95 and the π-π interactions with Phe217 and Phe218. The binding modes exhibit some similarities among RXRs, such as the interactions with Arg95 and Ala106. Nonetheless, owing to the absence of Ile47, Cys48, Ala50, Ala51 and residues 225∼237 in the active site, the binding pocket in RXRγ is two times larger than those of RXRα and RXRβ. Meanwhile, spatial effects of Trp84, Arg95, Ala106, Phe217 and Phe218 help to create a differently shaped binding pocket as compared to those of RXRα and RXRβ. Consequently, the ligand in RXRγ undergoes a “standing” posing which is distinct from the other two RXRs.  相似文献   

8.
For further investigation of BACE1 inhibitors using conformational restriction with sp3 hybridized carbon, we applied this approach to 6-substituted aminopyrimidone derivatives 3 to improve the inhibitory activity by reducing the entropic energy loss upon binding to BACE1. Among eight stereoisomers synthesized, [trans-(1′R,2′R),6S] isomer 6 exhibited the best BACE1 inhibitory activity, which was statistically superior to that of the corresponding ethylene linker compound (R)-3. Combinational examinations of the binding mode of 6 were performed, which included isothermal titration calorimetry (ITC), X-ray crystallographic structure analysis and theoretical calculations, to clarify the effect of our conformational restriction approach. From the ITC measurement, the binding entropy of 6 was found to be ~0.5 kcal larger than that of (R)-3, which is considered to be affected by conformational restriction with a cyclopropane ring.  相似文献   

9.
Ghosh KS  Pande A  Pande J 《Biochemistry》2011,50(16):3279-3281
α-Crystallin is a small heat shock protein and molecular chaperone. Binding of Cu2+ and Zn2+ ions to α-crystallin leads to enhanced chaperone function. Sequestration of Cu2+ by α-crystallin prevents metal-ion mediated oxidation. Here we show that binding of human γD-crystallin (HGD, a natural substrate) to human αA-crystallin (HAA) is inversely related to the binding of Cu2+/Zn2+ ions: The higher the amount of bound HGD, the lower the amount of bound metal ions. Thus, in the aging lens, depletion of free HAA will not only lower chaperone capacity but also lower Cu2+ sequestration, thereby promoting oxidation and cataract.  相似文献   

10.
Human-β-defensins HBD-1-3 are important components of the innate immune system. Synthetic peptides Phd-1-3 with a single disulphide bond, spanning the cationic C-terminal region of HBD-1-3, have antimicrobial activity. The interaction of Phd-1-3 with model membranes was investigated using isothermal titration calorimetry (ITC) and steady-state fluorescence polarization to understand the biophysical basis for the mechanism of antimicrobial action. Calorimetric titration of POPE:POPG (7:3) vesicles with peptides at 25°C and 37°C showed complex profiles with two distinct regions of heat changes. The data indicate binding of Phd-1-3 at 37°C to both negative and zwitterionic lipid vesicles is exothermic with low enthalpy values (ΔH~-1.3 to -2.8kcal/mol) as compared to amphipathic helical antibacterial peptides. The adsorption of peptides to negatively charged lipid membranes is modulated by electrostatic interactions that are described by surface partition equilibrium model using Gouy-Chapman theory. However, this model could not explain the isotherms of peptide binding to zwitterionic lipid vesicles. Fluorescence polarization of TMA-DPH (1-[4-(trimethylammonio) phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene) located in the head group and acyl chain region respectively, indicates that the peptides interact with interfacial region of negatively charged membranes. Based on the results obtained, we conclude that adsorption of cationic peptides Phd-1-3 on lipid surface do not result in conformational change or pore formation. It is proposed that interaction of Phd-1-3 with the negatively charged lipid head group causes membrane destabilization, which in turn affects the efficient functioning of cytoplasmic membrane proteins in bacteria, resulting in cell death.  相似文献   

11.
Human-β-defensins HBD-1–3 are important components of the innate immune system. Synthetic peptides Phd-1–3 with a single disulphide bond, spanning the cationic C-terminal region of HBD-1–3, have antimicrobial activity. The interaction of Phd-1–3 with model membranes was investigated using isothermal titration calorimetry (ITC) and steady-state fluorescence polarization to understand the biophysical basis for the mechanism of antimicrobial action. Calorimetric titration of POPE:POPG (7:3) vesicles with peptides at 25 °C and 37 °C showed complex profiles with two distinct regions of heat changes. The data indicate binding of Phd-1–3 at 37 °C to both negative and zwitterionic lipid vesicles is exothermic with low enthalpy values (ΔH ~ ? 1.3 to ? 2.8 kcal/mol) as compared to amphipathic helical antibacterial peptides. The adsorption of peptides to negatively charged lipid membranes is modulated by electrostatic interactions that are described by surface partition equilibrium model using Gouy–Chapman theory. However, this model could not explain the isotherms of peptide binding to zwitterionic lipid vesicles. Fluorescence polarization of TMA-DPH (1-[4-(trimethylammonio) phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene) located in the head group and acyl chain region respectively, indicates that the peptides interact with interfacial region of negatively charged membranes. Based on the results obtained, we conclude that adsorption of cationic peptides Phd-1–3 on lipid surface do not result in conformational change or pore formation. It is proposed that interaction of Phd-1–3 with the negatively charged lipid head group causes membrane destabilization, which in turn affects the efficient functioning of cytoplasmic membrane proteins in bacteria, resulting in cell death.  相似文献   

12.
We determined the binding sites of curcumin (cur), resveratrol (res), and genistein (gen) with milk β-lactoglobulin (β-LG) at physiological conditions. Fourier transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopic methods as well as molecular modeling were used to determine the binding of polyphenol–protein complexes. Structural analysis showed that polyphenols bind β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of Kcurcumin–β-LG?=?4.4 (±?.4)?×?104 M?1, Kresveratrol–β-LG?=?4.2 (±?.2)?×?104 M?1, and Kgenistein–β-LG?=?1.2 (±?.2)?×?104?M?1. The number of polyphenol molecules bound per protein (n) was 1 (cur), 1.1 (res), and 1 (gen). Molecular modeling showed the participation of several amino acid residues in polyphenol–protein complexation with the free binding energy of ?12.67 (curcumin–β-LG), ?12.60 (resveratrol–β-LG), and ?10.68?kcal/mol (genistein–β-LG). The order of binding was cur?>?res?>?gen. Alteration of the protein conformation was observed in the presence of polyphenol with a major reduction of β-sheet and an increase in turn structure, causing a partial protein structural destabilization. β-LG might act as a carrier to transport polyphenol in vitro.  相似文献   

13.
Retinal S-antigen and interphotoreceptor retinoid-binding protein-3 play a significant role in the etiopathogenesis of Eales' disease. Protein 3D structures are functionally very important and play a significant role in progression of the disease, hence these 3D structures are better target for further drug designing and relative studies. We developed 3D model structure of retinol-binding protein-3 and retinal S-antigen protein of human involved in Eales' disease. Functional site prediction is a very important and related step; hence, in the current course of analysis, we predicted putative functional site residues in the target proteins. Molecular models of these proteins of Eales' disease as documented in this study may provide a valuable aid for designing an inhibitor or better ligand against Eales' disease and could play a significant role in drug design.  相似文献   

14.
15.
Previous work has shown that the α-tocopherol transfer protein (α-TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which α-TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of α-TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of α-TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired α-TTP-assisted secretion of α-tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.  相似文献   

16.
It is known that the presence of calcium ions (Ca2 + ) is necessary for the enterobacterial virus ΦX174 to inject its DNA into the host cell, and that some mutations in the major capsid proteins lead to better survivability at higher temperatures. Our goal in the current study is to determine the physical changes in both the wild-type and mutant virus due to the binding of Ca2 + . Thus, we performed molecular dynamics simulations of the ΦX174 major capsid protein complex with and without Ca2 +  bound. Our results show that binding of Ca2 +  leads to energetic and dynamical changes in the virus proteins. In particular, the results suggest that binding of Ca2 +  is energetically favorable and that the mutation leads to increased fluctuations of the protein complex (especially with the calcium ions bound to the complex), which may increase the rate of genome packaging and ejection for ΦX174.  相似文献   

17.
Molecular docking has been performed to investigate the binding mode of (-)-meptazinol (MEP) with acetylcholinesterase (AChE) and to screen bis-meptazinol (bis-MEP) derivatives for preferable synthetic candidates virtually. A reliable and practical docking method for investigation of AChE ligands was established by the comparison of two widely used docking programs, FlexX and GOLD. In our hands, we had more luck using GOLD than FlexX in reproducing the experimental poses of known ligands (RMSD<1.5 A). GOLD fitness values of known ligands were also in good agreement with their activities. In the present GOLD docking protocol, (-)-MEP seemed to bind with the enzyme catalytic site in an open-gate conformation through strong hydrophobic interactions and a hydrogen bond. Virtual screening of a potential candidate compound library suggested that the most promising 15 bis-MEP derivatives on the list were mainly derived from (-)-MEP with conformations of (S,S) and (SR,RS) and with a 2- to 7-carbon linkage. Although there are still no biological results to confirm the predictive power of this method, the current study could provide an alternate tool for structural optimization of (-)-MEP as new AChE inhibitors. [Figure: see text].  相似文献   

18.
Biomechanics and Modeling in Mechanobiology - The lattice Boltzmann method (LBM) has been increasingly used as a stand-alone CFD solver in various biomechanical applications. This study proposes a...  相似文献   

19.
Numerous studies suggest that supplemental vitamin E prior to or during vast surgeries might diminish or even prevent ischemia/reperfusion-induced injuries. In the present placebo-controlled study male Sprague-Dawley rats were supplemented parenterally or orally with α-tocopherol for three consecutive days. The applied amount of α-tocopherol was 2.3 μmol per day for oral and 1.2 μmol per day for parenteral supplementation. The enrichment of vitamin E concentrations in plasma and tissue samples (aortic endothelium, liver, and lung) was determined by HPLC. The vitamin E level was elevated following intravenous supplementation in plasma (21.4±1.9 μmol/L vs. 10.2±1.7 μmol/L in parenteral control group), in aortic endothelium (1.1±0.2 pmol/mm2 vs. 0.5±0.1 pmol/mm2) and in liver and lung (41.3±7.5 pmol/mg vs. 22.9±6.5 pmol/mg and 75.6±13.6 pmol/mg vs. 51.7±5.9 pmol/mg, respectively). Oral supplementation for three days also led to an increased level in liver (38.2±7.7 pmol/mg vs. 22.9±6.6 pmol/mg in oral control group) and in lung (67.8±5.7 pmol/mg vs. 51.7±9.3 pmol/mg) but not in aortic endothelium or plasma (0.8±0.3 pmol/mm2 vs. 0.6±0.3 pmol/mm2 and 12.0±2.2 μmol/L vs. 10.7±2.6 μol/L.)  相似文献   

20.
The NS5B RdRp polymerase is a prominent enzyme for the replication of Hepatitis C virus (HCV). During the HCV replication, the template RNA binding takes place in the “fingers” sub-domain of NS5B. The “fingers” domain is a new emerging allosteric site for the HCV drug development. The inhibitors of the “fingers” sub-domain adopt a new antiviral mechanism called RNA intervention. The details of essential amino acid residues, binding mode of the ligand, and the active site intermolecular interactions of RNA intervention reflect that this mechanism is ambiguous in the experimental study. To elucidate these details, we performed molecular docking analysis of the fingers domain inhibitor quercetagetin (QGN) with NS5B polymerase. The detailed analysis of QGN-NS5B intermolecular interactions was carried out and found that QGN interacts with the binding pocket amino acid residues Ala97, Ala140, Ile160, Phe162, Gly283, Gly557, and Asp559; and also forms π?π stacking interaction with Phe162 and hydrogen bonding interaction with Gly283. These are found to be the essential interactions for the RNA intervention mechanism. Among the strong hydrogen bonding interactions, the QGN?Ala140 is a newly identified important hydrogen bonding interaction by the present work and this interaction was not resolved by the previously reported crystal structure. Since D559G mutation at the fingers domain was reported for reducing the inhibition percentage of QGN to sevenfold, we carried out molecular dynamics (MD) simulation for wild and D559G mutated complexes to study the stability of protein conformation and intermolecular interactions. At the end of 50?ns MD simulation, the π?π stacking interaction of Phe162 with QGN found in the wild-type complex is altered into T-shaped π stacking interaction, which reduces the inhibition strength. The origin of the D559G resistance mutation was studied using combined MD simulation, binding free energy calculations and principal component analysis. The results were compared with the wild-type complex. The mutation D559G reduces the binding affinity of the QGN molecule to the fingers domain. The free energy decomposition analysis of each residue of wild-type and mutated complexes revealed that the loss of non-polar energy contribution is the origin of the resistance.

Communicated by Ramaswamy H. Sarma  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号