首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
The accelerated failure time (AFT) model and Cox proportional hazards (PH) model are broadly used for survival endpoints of primary interest. However, the estimation efficiency from those models can be further enhanced by incorporating the information from secondary outcomes that are increasingly available and highly correlated with primary outcomes. Those secondary outcomes could be longitudinal laboratory measures collected from doctor visits or cross-sectional disease-relevant variables, which are believed to contain extra information related to primary survival endpoints to a certain extent. In this paper, we develop a two-stage estimation framework to combine a survival model with a secondary model that contains secondary outcomes, named as the empirical-likelihood-based weighting (ELW), which comprises two weighting schemes accommodated to the AFT model (ELW-AFT) and the Cox PH model (ELW-Cox), respectively. This innovative framework is flexibly adaptive to secondary outcomes with complex data features, and it leads to more efficient parameter estimation in the survival model even if the secondary model is misspecified. Extensive simulation studies showcase more efficiency gain from ELW compared to conventional approaches, and an application in the Atherosclerosis Risk in Communities study also demonstrates the superiority of ELW by successfully detecting risk factors at the time of hospitalization for acute myocardial infarction.  相似文献   

2.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

3.
Transition models are an important framework that can be used to model longitudinal categorical data. They are particularly useful when the primary interest is in prediction. The available methods for this class of models are suitable for the cases in which responses are recorded individually over time. However, in many areas, it is common for categorical data to be recorded as groups, that is, different categories with a number of individuals in each. As motivation we consider a study in insect movement and another in pig behaviou. The first study was developed to understand the movement patterns of female adults of Diaphorina citri, a pest of citrus plantations. The second study investigated how hogs behaved under the influence of environmental enrichment. In both studies, the number of individuals in different response categories was observed over time. We propose a new framework for considering the time dependence in the linear predictor of a generalized logit transition model using a quantitative response, corresponding to the number of individuals in each category. We use maximum likelihood estimation and present the results of the fitted models under stationarity and non-stationarity assumptions, and use recently proposed tests to assess non-stationarity. We evaluated the performance of the proposed model using simulation studies under different scenarios, and concluded that our modeling framework represents a flexible alternative to analyze grouped longitudinal categorical data.  相似文献   

4.
Analysis of categorical outcomes in a longitudinal study has been an important statistical issue. Continuous outcome in a similar study design is commonly handled by the mixed effects model. The longitudinal binary or Poisson-like outcome analysis is often handled by the generalized estimation equation (GEE) method. Neither method is appropriate for analyzing a multinomial outcome in a longitudinal study, although the cross-sectional multinomial outcome is often analyzed by generalized linear models. One reason that these methods are not used is that the correlation structure of two multinomial variables can not be easily specified. In addition, methods that rely upon GEE or mixed effects models are unsuitable in instances when the focus of a longitudinal study is on the rate of moving from one category to another. In this research, a longitudinal model that has three categories in the outcome variable will be examined. A continuous-time Markov chain model will be used to examine the transition from one category to another. This model permits an unbalanced number of measurements collected on individuals and an uneven duration between pairs of consecutive measurements. In this study, the explicit expression for the transition probability is derived that provides an algebraic form of the likelihood function and hence allows the implementation of the maximum likelihood method. Using this approach, the instantaneous transition rate that is assumed to be a function of the linear combination of independent variables can be estimated. For a comparison between two groups, the odds ratios of occurrence at a particular category and their confidence intervals can be calculated. Empirical studies will be performed to compare the goodness of fit of the proposed method with other available methods. An example will also be used to demonstrate the application of this method.  相似文献   

5.
Existing methods for joint modeling of longitudinal measurements and survival data can be highly influenced by outliers in the longitudinal outcome. We propose a joint model for analysis of longitudinal measurements and competing risks failure time data which is robust in the presence of outlying longitudinal observations during follow‐up. Our model consists of a linear mixed effects sub‐model for the longitudinal outcome and a proportional cause‐specific hazards frailty sub‐model for the competing risks data, linked together by latent random effects. Instead of the usual normality assumption for measurement errors in the linear mixed effects sub‐model, we adopt a t ‐distribution which has a longer tail and thus is more robust to outliers. We derive an EM algorithm for the maximum likelihood estimates of the parameters and estimate their standard errors using a profile likelihood method. The proposed method is evaluated by simulation studies and is applied to a scleroderma lung study (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Ye W  Lin X  Taylor JM 《Biometrics》2008,64(4):1238-1246
SUMMARY: In this article we investigate regression calibration methods to jointly model longitudinal and survival data using a semiparametric longitudinal model and a proportional hazards model. In the longitudinal model, a biomarker is assumed to follow a semiparametric mixed model where covariate effects are modeled parametrically and subject-specific time profiles are modeled nonparametrially using a population smoothing spline and subject-specific random stochastic processes. The Cox model is assumed for survival data by including both the current measure and the rate of change of the underlying longitudinal trajectories as covariates, as motivated by a prostate cancer study application. We develop a two-stage semiparametric regression calibration (RC) method. Two variations of the RC method are considered, risk set regression calibration and a computationally simpler ordinary regression calibration. Simulation results show that the two-stage RC approach performs well in practice and effectively corrects the bias from the naive method. We apply the proposed methods to the analysis of a dataset for evaluating the effects of the longitudinal biomarker PSA on the recurrence of prostate cancer.  相似文献   

7.
In some large clinical studies, it may be impractical to perform the physical examination to every subject at his/her last monitoring time in order to diagnose the occurrence of the event of interest. This gives rise to survival data with missing censoring indicators where the probability of missing may depend on time of last monitoring and some covariates. We present a fully Bayesian semi‐parametric method for such survival data to estimate regression parameters of the proportional hazards model of Cox. Theoretical investigation and simulation studies show that our method performs better than competing methods. We apply the proposed method to analyze the survival data with missing censoring indicators from the Orofacial Pain: Prospective Evaluation and Risk Assessment study.  相似文献   

8.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

9.
Mills JE  Field CA  Dupuis DJ 《Biometrics》2002,58(4):727-734
Longitudinal data modeling is complicated by the necessity to deal appropriately with the correlation between observations made on the same individual. Building on an earlier nonrobust version proposed by Heagerty (1999, Biometrics 55, 688-698), our robust marginally specified generalized linear mixed model (ROBMS-GLMM) provides an effective method for dealing with such data. This model is one of the first to allow both population-averaged and individual-specific inference. As well, it adopts the flexibility and interpretability of generalized linear mixed models for introducing dependence but builds a regression structure for the marginal mean, allowing valid application with time-dependent (exogenous) and time-independent covariates. These new estimators are obtained as solutions of a robustified likelihood equation involving Huber's least favorable distribution and a collection of weights. Huber's least favorable distribution produces estimates that are resistant to certain deviations from the random effects distributional assumptions. Innovative weighting strategies enable the ROBMS-GLMM to perform well when faced with outlying observations both in the response and covariates. We illustrate the methodology with an analysis of a prospective longitudinal study of laryngoscopic endotracheal intubation, a skill that numerous health-care professionals are expected to acquire. The principal goal of our research is to achieve robust inference in longitudinal analyses.  相似文献   

10.
Zhou X  Yan L  Prows DR  Yang R 《Genomics》2011,97(6):379-385
As the two most popular models in survival analysis, the accelerated failure time (AFT) model can more easily fit survival data than the Cox proportional hazards model (PHM). In this study, we develop a general parametric AFT model for identifying survival trait loci, in which the flexible generalized F distribution, including many commonly used distributions as special cases, is specified as the baseline survival distribution. EM algorithm for maximum likelihood estimation of model parameters is given. Simulations are conducted to validate the flexibility and the utility of the proposed mapping procedure. In analyzing survival time following hyperoxic acute lung injury (HALI) of mice in an F(2) mating population, the generalized F distribution performed best among the six competing survival distributions and detected four QTLs controlling differential HALI survival.  相似文献   

11.
The Cox proportional hazards model or its discrete time analogue, the logistic failure time model, posit highly restrictive parametric models and attempt to estimate parameters which are specific to the model proposed. These methods are typically implemented when assessing effect modification in survival analyses despite their flaws. The targeted maximum likelihood estimation (TMLE) methodology is more robust than the methods typically implemented and allows practitioners to estimate parameters that directly answer the question of interest. TMLE will be used in this paper to estimate two newly proposed parameters of interest that quantify effect modification in the time to event setting. These methods are then applied to the Tshepo study to assess if either gender or baseline CD4 level modify the effect of two cART therapies of interest, efavirenz (EFV) and nevirapine (NVP), on the progression of HIV. The results show that women tend to have more favorable outcomes using EFV while males tend to have more favorable outcomes with NVP. Furthermore, EFV tends to be favorable compared to NVP for individuals at high CD4 levels.  相似文献   

12.

Longitudinal studies with binary outcomes characterized by informative right censoring are commonly encountered in clinical, basic, behavioral, and health sciences. Approaches developed to analyze data with binary outcomes were mainly tailored to clustered or longitudinal data with missing completely at random or at random. Studies that focused on informative right censoring with binary outcomes are characterized by their imbedded computational complexity and difficulty of implementation. Here we present a new maximum likelihood-based approach with repeated binary measures modeled in a generalized linear mixed model as a function of time and other covariates. The longitudinal binary outcome and the censoring process determined by the number of times a subject is observed share latent random variables (random intercept and slope) where these subject-specific random effects are common to both models. A simulation study and sensitivity analysis were conducted to test the model under different assumptions and censoring settings. Our results showed accuracy of the estimates generated under this model when censoring was fully informative or partially informative with dependence on the slopes. A successful implementation was undertaken on a cohort of renal transplant patients with blood urea nitrogen as a binary outcome measured over time to indicate normal and abnormal kidney function until the emanation of graft rejection that eventuated in informative right censoring. In addition to its novelty and accuracy, an additional key feature and advantage of the proposed model is its viability of implementation on available analytical tools and widespread application on any other longitudinal dataset with informative censoring.

  相似文献   

13.
Chi YY  Ibrahim JG 《Biometrics》2006,62(2):432-445
Joint modeling of longitudinal and survival data is becoming increasingly essential in most cancer and AIDS clinical trials. We propose a likelihood approach to extend both longitudinal and survival components to be multidimensional. A multivariate mixed effects model is presented to explicitly capture two different sources of dependence among longitudinal measures over time as well as dependence between different variables. For the survival component of the joint model, we introduce a shared frailty, which is assumed to have a positive stable distribution, to induce correlation between failure times. The proposed marginal univariate survival model, which accommodates both zero and nonzero cure fractions for the time to event, is then applied to each marginal survival function. The proposed multivariate survival model has a proportional hazards structure for the population hazard, conditionally as well as marginally, when the baseline covariates are specified through a specific mechanism. In addition, the model is capable of dealing with survival functions with different cure rate structures. The methodology is specifically applied to the International Breast Cancer Study Group (IBCSG) trial to investigate the relationship between quality of life, disease-free survival, and overall survival.  相似文献   

14.
We propose a constrained maximum partial likelihood estimator for dimension reduction in integrative (e.g., pan-cancer) survival analysis with high-dimensional predictors. We assume that for each population in the study, the hazard function follows a distinct Cox proportional hazards model. To borrow information across populations, we assume that each of the hazard functions depend only on a small number of linear combinations of the predictors (i.e., “factors”). We estimate these linear combinations using an algorithm based on “distance-to-set” penalties. This allows us to impose both low-rankness and sparsity on the regression coefficient matrix estimator. We derive asymptotic results that reveal that our estimator is more efficient than fitting a separate proportional hazards model for each population. Numerical experiments suggest that our method outperforms competitors under various data generating models. We use our method to perform a pan-cancer survival analysis relating protein expression to survival across 18 distinct cancer types. Our approach identifies six linear combinations, depending on only 20 proteins, which explain survival across the cancer types. Finally, to validate our fitted model, we show that our estimated factors can lead to better prediction than competitors on four external datasets.  相似文献   

15.
This paper presents an extension of the joint modeling strategy for the case of multiple longitudinal outcomes and repeated infections of different types over time, motivated by postkidney transplantation data. Our model comprises two parts linked by shared latent terms. On the one hand is a multivariate mixed linear model with random effects, where a low‐rank thin‐plate spline function is incorporated to collect the nonlinear behavior of the different profiles over time. On the other hand is an infection‐specific Cox model, where the dependence between different types of infections and the related times of infection is through a random effect associated with each infection type to catch the within dependence and a shared frailty parameter to capture the dependence between infection types. We implemented the parameterization used in joint models which uses the fitted longitudinal measurements as time‐dependent covariates in a relative risk model. Our proposed model was implemented in OpenBUGS using the MCMC approach.  相似文献   

16.
Yin G 《Biometrics》2005,61(2):552-558
Due to natural or artificial clustering, multivariate survival data often arise in biomedical studies, for example, a dental study involving multiple teeth from each subject. A certain proportion of subjects in the population who are not expected to experience the event of interest are considered to be "cured" or insusceptible. To model correlated or clustered failure time data incorporating a surviving fraction, we propose two forms of cure rate frailty models. One model naturally introduces frailty based on biological considerations while the other is motivated from the Cox proportional hazards frailty model. We formulate the likelihood functions based on piecewise constant hazards and derive the full conditional distributions for Gibbs sampling in the Bayesian paradigm. As opposed to the Cox frailty model, the proposed methods demonstrate great potential in modeling multivariate survival data with a cure fraction. We illustrate the cure rate frailty models with a root canal therapy data set.  相似文献   

17.
In many longitudinal studies, the individual characteristics associated with the repeated measures may be possible covariates of the time to an event of interest, and thus, it is desirable to model the time-to-event process and the longitudinal process jointly. Statistical analyses may be further complicated in such studies with missing data such as informative dropouts. This article considers a nonlinear mixed-effects model for the longitudinal process and the Cox proportional hazards model for the time-to-event process. We provide a method for simultaneous likelihood inference on the 2 models and allow for nonignorable data missing. The approach is illustrated with a recent AIDS study by jointly modeling HIV viral dynamics and time to viral rebound.  相似文献   

18.
Penalized estimating equations   总被引:1,自引:0,他引:1  
Fu WJ 《Biometrics》2003,59(1):126-132
Penalty models--such as the ridge estimator, the Stein estimator, the bridge estimator, and the Lasso-have been proposed to deal with collinearity in regressions. The Lasso, for instance, has been applied to linear models, logistic regressions, Cox proportional hazard models, and neural networks. This article considers the bridge penalty model with penalty sigma(j)/beta(j)/gamma for estimating equations in general and applies this penalty model to the generalized estimating equations (GEE) in longitudinal studies. The lack of joint likelihood in the GEE is overcome by the penalized estimating equations, in which no joint likelihood is required. The asymptotic results for the penalty estimator are provided. It is demonstrated, with a simulation and an application, that the penalized GEE potentially improves the performance of the GEE estimator, and enjoys the same properties as linear penalty models.  相似文献   

19.
Liu LC  Hedeker D 《Biometrics》2006,62(1):261-268
A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.  相似文献   

20.
Large‐scale agreement studies are becoming increasingly common in medical settings to gain better insight into discrepancies often observed between experts' classifications. Ordered categorical scales are routinely used to classify subjects' disease and health conditions. Summary measures such as Cohen's weighted kappa are popular approaches for reporting levels of association for pairs of raters' ordinal classifications. However, in large‐scale studies with many raters, assessing levels of association can be challenging due to dependencies between many raters each grading the same sample of subjects' results and the ordinal nature of the ratings. Further complexities arise when the focus of a study is to examine the impact of rater and subject characteristics on levels of association. In this paper, we describe a flexible approach based upon the class of generalized linear mixed models to assess the influence of rater and subject factors on association between many raters' ordinal classifications. We propose novel model‐based measures for large‐scale studies to provide simple summaries of association similar to Cohen's weighted kappa while avoiding prevalence and marginal distribution issues that Cohen's weighted kappa is susceptible to. The proposed summary measures can be used to compare association between subgroups of subjects or raters. We demonstrate the use of hypothesis tests to formally determine if rater and subject factors have a significant influence on association, and describe approaches for evaluating the goodness‐of‐fit of the proposed model. The performance of the proposed approach is explored through extensive simulation studies and is applied to a recent large‐scale cancer breast cancer screening study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号