首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is estimated that over half of all proteins are glycosylated, yet only a small number of the structures in the protein data bank are of intact glycoproteins. One of the reasons for the lack of structural information on glycoproteins is the high cost of isotopically labeling proteins expressed from eukaryotic cells such as in insect and mammalian cells. In this paper we describe modifications to commercial insect cell growth medium that reduce the cost for isotopically labeling recombinant proteins expressed from Sf9 cells. A key aspect of this work was to reduce the amount of glutamine in the cell culture medium while maintaining sufficient energy yielding metabolites for vigorous growth by supplementing with glucose and algae-derived amino acids. We present an analysis of cell growth and protein production in Sf9 insect cells expressing secreted Thy1-GFP fusion construct. We also demonstrate isotopic enrichment of the Thy-1 protein backbone with 15N and carbohydrates with 13C by NMR spectroscopy.Electronic supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15N and 13C with yields comparable to expression in full media. For 2H,15N and 2H,13C,15N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.  相似文献   

3.
Here we report the first application of amino acid-type selective (AATS) isotope labeling of a recombinant protein secreted by Brevibacillus choshinensis for a nuclear magnetic resonance (NMR) study. To prepare the 15N-AATS-labeled protein, the transformed B. choshinensis was cultured in 15N-labeled amino acid-containing C.H.L. medium, which is commonly used in the Escherichia coli expression system. The analyses of the 1H-15N heteronuclear single quantum coherence (HSQC) spectra of the secreted proteins with a 15N-labeled amino acid demonstrated that alanine, arginine, asparagine, cysteine, glutamine, histidine, lysine, methionine, and valine are suitable for selective labeling, although acidic and aromatic amino acids are not suitable. The 15N labeling for glycine, isoleucine, leucine, serine, and threonine resulted in scrambling to specific amino acids. These results indicate that the B. choshinensis expression system is an alternative tool for AATS labeling of recombinant proteins, especially secretory proteins, for NMR analyses.  相似文献   

4.
Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13C,15N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13C and 15N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.  相似文献   

5.
6.
Abstract

We report a cost efficient approach for amino-acid-type selective isotope labeling of proteins expressed in Leishmania tarentolae. The method provides an economically advantageous alternative to recently established protocol for isotopic labeling using expensive synthetic media. The method is based on cultivation of the L. tarentolae expression strain in a cheap complex medium supplemented with labeled amino acid(s). In this protocol, a labeled amino acid is deliberately diluted in the medium of undefined composition, which leads to a low-level isotope enrichment upon protein over-expression. The economic advantage of the protocol is achieved by avoiding large volumes of expensive synthetic medium. Decreased sensitivity of a NMR experiment due to low-level isotope enrichment is compensated by a five- to seven-fold increase of the yield of the recombinant protein in complex medium as compared to that in the synthetic medium. In addition, the decreased sensitivity can be compensated by using a higher magnetic field, cryo-detection system or higher number of transients during the NMR data acquisition. We show that enrichment as low as 5% does not compromise a NMR experiment and makes preparation of the recombinant proteins over- expressed in L. tarentolae economically viable. The method is demonstrated by selective labeling of the ~27 kDa enhanced green fluorescent protein (EGFP) with 15N-labeled valine.  相似文献   

7.
As-p18 is produced and secreted by larvae of the parasitic nematode Ascaris suum as they develop within their eggs. The protein is a member of the fatty acid binding protein (FABP) family found in a wide range of eukaryotes, but is distinctive in that it is secreted from the synthesizing cell and has predicted additional structural features not previously seen in other FABPs. As-p18 and similar proteins found only in nematodes have therefore been designated ‘nemFABPs’. Sequence-specific 1H, 13C and 15N resonance assignments were established for the 155 amino acid recombinant protein (18.3 kDa) in complex with oleic acid, using a series of three-dimensional triple-resonance heteronuclear NMR experiments. The secondary structure of As-p18 is predicted to be very similar to other FABPs, but the protein has extended loops that have not been observed in other FABPs whose structures have so far been solved.  相似文献   

8.
The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.  相似文献   

9.
A simple isotope labeling approach for selective 13C/15N backbone labeling of proteins is described. Using {1,2-13C2}-pyruvate as the sole carbon source in bacterial growth media, selective incorporation of 13Cα-13CO spin-pairs into the backbones of protein molecules with medium-to-high levels of 13C-enrichment is possible for a subset of 12 amino acids. The isotope labeling scheme has been tested on a pair of proteins—a 7-kDa immunoglobulin binding domain B1 of streptococcal protein G and an 82-kDa enzyme malate synthase G. A number of protein NMR applications are expected to benefit from the {1,2-13C2}-pyruvate based protein production.  相似文献   

10.
Summary An approach to produce 13C-and 15N-enriched proteins is described. The concept is based on intracellular production of the recombinant proteins in Escherichia coli as fusions to an IgG-binding domain, Z, derived from staphylococcal protein A. The production method provides yields of 40–200 mg/l of isotope-enriched fusion proteins in defined minimal media. In addition, the Z fusion partner facilitates the first purification step by IgG affinity chromatography. The production system is applied to isotope enrichment of human insulin-like growth factor II (IGF-II), bovine pancreatic trypsin inhibitor (BPTI), and Z itself. High levels of protein production are achieved in shaker flasks using totally defined minimal medium supplemented with 13C6-glucose and (15NH4)2SO4 as the only carbon and nitrogen sources. Growth conditions were optimized to obtain high protein production levels and high levels of isotope incorporation, while minimizing 13C6-glucose usage. Incorporation levels of 13C and/or 15N isotopes in purified IGF-II, BPTI, and Z were confirmed using mass spectrometry and NMR spectroscopy. More than 99% of total isotope enrichment was obtained using a defined isotope-enriched minimal medium. The optimized systems provide reliable, high-level production of isotope-enriched fusion proteins. They can be used to produce 20–40 mg/l of properly folded Z and BPTI proteins. The production system of recombinant BPTI is state-of-the-art and provides the highest known yield of native refolded BPTI.Abbreviations BPTI bovine pancreatic trypsin inhibitor - DTT dithiothreitol - Gdn-HCl guanidinium hydrochloride - IAA -indole acrylic acid - IGF-II insulin-like growth factor II - PBS phosphate-buffered saline - PDMS plasma desorption mass spectrometry - PFPA pentafluoro propionic acid - RP-HPLC reversed-phase high performance liquid chromatography - Z IgG-binding protein domain derived from staphylococcal protein A.  相似文献   

11.
Culture conditions for successful amino–acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells are described. The method was applied to the selective labeling of the catalytic domain of c-Abl kinase with 15N-phenylalanine, 15N-glycine, 15N-tyrosine or 15N-valine. For the essential amino acids phenylalanine, tyrosine and valine high 15N-label incorporation rates of 90% and approximately the expected number of resonances in the HSQC spectra were observed, which was not the case for the non-essential amino acid glycine. The method should be applicable to amino-acid-type selective isotope labeling of other recombinant proteins which have not been amenable to NMR analysis.  相似文献   

12.

Mammalian cells are widely used for producing recombinant glycoproteins of pharmaceutical interest. However, a major drawback of using mammalian cells is the high production costs associated with uniformly isotope-labeled glycoproteins due to the large quantity of labeled l-glutamine required for their growth. To address this problem, we developed a cost-saving method for uniform isotope labeling by cultivating the mammalian cells under glutamine-free conditions, which was achieved by co-expression of glutamine synthase. We demonstrate the utility of this approach using fucosylated and non-fucosylated Fc glycoforms of human immunoglobulin G1.

  相似文献   

13.
Fibrillar protein aggregates contribute to the pathology of a number of disease states. To facilitate structural studies of these amyloid fibrils by solid-state NMR, efficient methods for the production of milligram quantities of isotopically labeled peptide are necessary. Bacterial expression of recombinant amyloid proteins and peptides allows uniform isotopic labeling, as well as other patterns of isotope incorporation. However, large-scale production of recombinant amyloidogenic peptides has proven particularly difficult, due to their inherent propensity for aggregation and the associated toxicity of fibrillar material. Yields of recombinant protein are further reduced by the small molecular weights of short amyloidogenic fragments. Here, we report high-yield expression and purification of a peptide comprising residues 11-26 of the Alzheimer's beta-amyloid protein (Abeta(11-26)), with homoserine lactone replacing serine at residue 26. Expression in inclusion bodies as a ketosteroid isomerase fusion protein and subsequent purification under denaturing conditions allows production of milligram quantities of uniformly labeled (13)C- and (15)N-labeled peptide, which forms amyloid fibrils suitable for solid-state NMR spectroscopy. Initial structural data obtained by atomic force microscopy, electron microscopy, and solid-state NMR measurements of Abeta(11-26) fibrils are also presented.  相似文献   

14.
This report shows for the first time the efficient uniform isotope labeling of a recombinant protein expressed using Baculovirus-infected insect cells. The recent availability of suitable media for 15N- and 13C/15N-labeling in insect cells, the high expression of Abl kinase in these labeling media and a suitable labeling protocol made it possible to obtain a 1H–15N-HSQC spectrum for the catalytic domain of Abl kinase of good quality and with label incorporation rates > 90%. The presented isotope labeling method should be applicable also to further proteins where successful expression is restricted to the Baculovirus expression system.  相似文献   

15.
NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-13C-glucose and 15N-glutamate as labeled precursors. This study suggests that uniformly 15N,13C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.  相似文献   

16.
Chemical modification is an easy way for stable isotope labeling of non-labeled proteins. The reductive 13C-methylation of the amino group of the lysine side-chain by 13C-formaldehyde is a post-modification and is applicable to most proteins since this chemical modification specifically and quickly proceeds under mild conditions such as 4 °C, pH 6.8, overnight. 13C-methylation has been used for NMR to study the interactions between the methylated proteins and various molecules, such as small ligands, nucleic acids and peptides. Here we applied lysine 13C-methylation NMR to monitor protein–protein interactions. The affinity and the intermolecular interaction sites of methylated ubiquitin with three ubiquitin-interacting proteins were successfully determined using chemical-shift perturbation experiments via the 1H–13C HSQC spectra of the 13C-methylated-lysine methyl groups. The lysine 13C-methylation NMR results also emphasized the importance of the usage of side-chain signals to monitor the intermolecular interaction sites, and was applicable to studying samples with concentrations in the low sub-micromolar range.  相似文献   

17.
In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope labeling can be used to define inter-domain interactions in NMR structure determination. Labeling of post-translational modified proteins like glycoproteins remains difficult but some promising developments were recently achieved. Key achievements are segmental and site-specific labeling schemes that improve resonance assignment and structure determination of the glycan moiety. We adjusted the focus of this perspective article to concentrate on the NMR applications based on recent developments rather than on labeling methods themselves to illustrate the considerable potential for biomolecular NMR.  相似文献   

18.
The 1H–13C HMQC signals of the 13CH3 moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ1-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically 13CH3-labeled [U–2H;15N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.  相似文献   

19.
Summary Most secreted eukaryotic proteins are modified by glycosylation, and it has been difficult to solve their structures by crystallographic or NMR techniques because of problems posed by the presence of the carbohydrate. The structure of a chemically deglycosylated form of the human pregnancy hormone, human chorionic gonadotropin (hCG), has been solved by crystallographic methods. Since chemical deglycosylation may have induced changes in the structure, and since it is known that deglycosylated hCG is biologically inactive, the crystallographic structure requires confirmation by NMR techniques. Also, it has not been possible to determine the structures of the isolated subunits, nor the nature of interactions between the carbohydrate side chains and the protein back bone by crystallographic methods. Structural information via NMR techniques can be obtained from proteins in solution if they can be uniformly labeled with 13C and 15N isotopes. We report the first such uniform labeling of a glycoprotein using a universal 13C-and 15N-labeling medium to express 13C, 15N-labeled hCG, suitable for solving the structure in solution of the native, biologically active form of hCG as well as that of its free subunits. The 13C, 15N-labeled recombinant hCG and its separated subunits are shown to be nearly identical to urinary hCG reference preparations on the basis of protein chemical studies, immunochemistry, biological activity, and the capability of isolated hormone subunits to recombine to form biologically active hormone. Mass spectrometric analysis and preliminary NMR studies indicate that the isotopic labeling is uniform and greater than 90% after only two growth passages in the labeling media. One unexpected finding during subunit purification was that lyophilization of glycoproteins from trifluoroacetic acid HPLC buffers may result in the loss of a significant portion of sialic acid.To whom correspondence should be addressed.  相似文献   

20.
Solution NMR studies of α-helical membrane proteins are often complicated by severe spectral crowding. In addition, hydrophobic environments like detergent micelles, isotropic bicelles or nanodiscs lead to considerably reduced molecular tumbling rates which translates into line-broadening and low sensitivity. Both difficulties can be addressed by selective isotope labeling methods. In this publication, we propose a combinatorial protocol that utilizes four different classes of labeled amino acids, in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes individually as well as simultaneously. This results in eight different combinations of dipeptides giving rise to cross peaks in 1H–15N correlated spectra. Their differentiation is achieved by recording a series of HN-detected 2D triple-resonance spectra. The utility of this new scheme is demonstrated with a homodimeric 142-residue membrane protein in DHPC micelles. Restricting the number of selectively labeled samples to three allowed the identification of the amino-acid type for 77 % and provided sequential information for 47 % of its residues. This enabled us to complete the backbone resonance assignment of the uniformly labeled protein merely with the help of a 3D HNCA spectrum, which can be collected with reasonable sensitivity even for relatively large, non-deuterated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号