首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Forward genetics and map-based cloning approaches   总被引:16,自引:0,他引:16  
Whereas reverse genetics strategies seek to identify and select mutations in a known sequence, forward genetics requires the cloning of sequences underlying a particular mutant phenotype. Map-based cloning is tedious, hampering the quick identification of candidate genes. With the unprecedented progress in the sequencing of whole genomes, and perhaps even more with the development of saturating marker technologies, map-based cloning can now be performed so efficiently that, at least for some plant model systems, it has become feasible to identify some candidate genes within a few months. This, in turn, will boost the use of forward genetics approaches, as applied (for example) to isolating genes involved in natural variation and genes causing phenotypic mutations as derived from (second-site) mutagenesis screens.  相似文献   

2.
In recent years, the zebrafish has become one of the most prominent vertebrate model organisms used to study the genetics underlying development, normal body function, and disease. The growing interest in zebrafish research was paralleled by an increase in tools and methods available to study zebrafish. While zebrafish research initially centered on mutagenesis screens (forward genetics), recent years saw the establishment of reverse genetic methods (morpholino knock-down, TILLING). In addition, increasingly sophisticated protocols for generating transgenic zebrafish have been developed and microarrays are now available to characterize gene expression on a near genome-wide scale. The identification of loci underlying specific traits is aided by genetic, physical, and radiation hybrid maps of the zebrafish genome and the zebrafish genome project. As genomic resources for aquacultural species are increasingly being generated, a meaningful interaction between zebrafish and aquacultural research now appears to be possible and beneficial for both sides. In particular, research on nutrition and growth, stress, and disease resistance in the zebrafish can be expected to produce results applicable to aquacultural fish, for example, by improving husbandry and formulated feeds. Forward and reverse genetics approaches in the zebrafish, together with the known conservation of synteny between the species, offer the potential to identify and verify candidate genes for quantitative trait loci (QTLs) to be used in marker-assisted breeding. Moreover, some technologies from the zebrafish field such as TILLING may be directly transferable to aquacultural research and production.  相似文献   

3.
The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.  相似文献   

4.
Novel integrative genomics strategies to identify genes for complex traits   总被引:1,自引:1,他引:0  
Forward genetics is a common approach to dissecting complex traits like common human diseases. The ultimate aim of this approach was the identification of genes that are causal for disease or other phenotypes of interest. However, the forward genetics approach is by definition restricted to the identification of genes that have incurred mutations over the course of evolution or that incurred mutations as a result of chemical mutagenesis, and that as a result lead to disease or to variations in other phenotypes of interest. Genes that harbour no such mutations, but that play key roles in parts of the biological network that lead to disease, are systematically missed by this class of approaches. Recently, a class of novel integrative genomics approaches has been devised to elucidate the complexity of common human diseases by intersecting genotypic, molecular profiling, and clinical data in segregating populations. These novel approaches take a more holistic view of biological systems and leverage the vast network of gene–gene interactions, in combination with DNA variation data, to establish causal relationships among molecular profiling traits and Fbetween molecular profiling and disease (or other classic phenotypes). A number of novel genes for disease phenotypes have been identified as a result of these approaches, highlighting the utility of integrating orthogonal sources of data to get at the underlying causes of disease.  相似文献   

5.
We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.  相似文献   

6.
Brassinosteroid signaling and application in rice   总被引:3,自引:0,他引:3  
Tong H  Chu C 《遗传学报》2012,39(1):3-9
Combined approaches with genetics, biochemistry, and proteomics studies have greatly advanced our understanding of brassinosteroid (BR) signaling in Arabidopsis. However, in rice, a model plant of monocot and as well an important crop plant, BR signaling is not as well characterized as in Arabidopsis. Recent studies by forward and reverse genetics have identified a number of either conserved or specific components of rice BR signaling pathway, bringing new ideas into BR signaling regulation mechanisms. Genetic manipulation of BR level or BR sensitivity to improve rice yield has established the great significance of BR research achievements.  相似文献   

7.
The European Workshop for Rheumatology Research met this year in Leiden, The Netherlands. The Workshop provided a platform to feast on new technologies and how they have taken research programmes forward. While there will be the inevitable delay during which mechanisms are devised for analysing the huge amount of information generated by these technologies, there is a lot already to look forward to. Highlights included genomic, reverse genomic and proteomic approaches to understanding disease pathogenesis and to identifying new therapeutic targets. Opportunities for exploring whether pharmacogenomics has a place in the clinic are now a reality, and phage display technology has been applied to in vivo arthritis models to identify human synovial microvascular 'post codes'.  相似文献   

8.
In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   

9.
The European Workshop for Rheumatology Research met this year in Leiden, The Netherlands. The Workshop provided a platform to feast on new technologies and how they have taken research programmes forward. While there will be the inevitable delay during which mechanisms are devised for analysing the huge amount of information generated by these technologies, there is a lot already to look forward to. Highlights included genomic, reverse genomic and proteomic approaches to understanding disease pathogenesis and to identifying new therapeutic targets. Opportunities for exploring whether pharmacogenomics has a place in the clinic are now a reality, and phage display technology has been applied to in vivo arthritis models to identify human synovial microvascular 'post codes'.  相似文献   

10.
Landrette SF  Xu T 《PLoS genetics》2011,7(7):e1002110
With recent advances in genomic technologies, candidate human disease genes are being mapped at an accelerated pace. There is a clear need to move forward with genetic tools that can efficiently validate these mutations in vivo. Murine somatic mutagenesis is evolving to fulfill these needs with tools such as somatic transgenesis, humanized rodents, and forward genetics. By combining these resources one is not only able to model disease for in vivo verification, but also to screen for mutations and pathways integral to disease progression and therapeutic intervention. In this review, we briefly outline the current advances in somatic mutagenesis and discuss how these new tools, especially the piggyBac transposon system, can be applied to decipher human biology and disease.  相似文献   

11.
Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. Special issue article in honor of Dr. George DeVries.  相似文献   

12.
There has been a long history of innovation and development of tools for gene discovery and genetic analysis in Drosophila melanogaster. This includes methods to induce mutations and to screen for those mutations that disrupt specific processes, methods to map mutations genetically and physically, and methods to clone and characterize genes at the molecular level. Modern genetics also requires techniques to do the reverse to disrupt the functions of specific genes, the sequences of which are already known. This is the process referred to as reverse genetics. During recent years, some valuable new methods for conducting reverse genetics in Drosophila have been developed.  相似文献   

13.
14.
Harper PS 《Human genetics》2011,130(2):169-174
The 50th anniversary of Mary Lyon’s 1961 Nature paper, proposing random inactivation in early embryonic life of one of the two X chromosomes in the cells of mammalian females, provides an opportunity to remember and celebrate the work of those involved. While the hypothesis was initially put forward by Lyon based on findings in the mouse, it was founded on earlier studies, notably the work of Susumu Ohno; it was also suggested independently by Beutler and colleagues using experimental evidence from a human X-linked disorder, glucose-6-phosphate dehydrogenase deficiency, and has proved to be of as great importance for human and medical genetics as it has for general mammalian genetics. Alongside the hypothesis itself, previous cytological studies of mouse and human chromosomes, and the observations on X-linked mutants in both species deserve recognition for their essential role in underpinning the hypothesis of random X-inactivation, while subsequent research on the X-inactivation centre and the molecular mechanisms underlying the inactivation process represent some of the most outstanding contributions to human and wider mammalian genetics over the past 50 years.  相似文献   

15.
《TARGETS》2002,1(4):130-138
Rapid advances in genomics technologies have identified a wealth of new therapeutic targets, but typically these targets are weakly validated with only circumstantial evidence to link them to human disease. The next challenge is testing gene-to-disease connections in a relevant animal model, a time-consuming and uncertain process using conventional reverse-genetic approaches such as knockout and transgenic mice. By contrast, forward genetics proceeds by measuring a physiological process that is relevant to disease, then identifying the gene products that impinge on this process. This ‘phenotype-first’ approach solves the bottleneck of target validation by using clinically relevant assays in a mammalian whole-animal system as a discovery platform. As an unbiased approach to gene discovery and validation, forward genetics will identify novel drug targets and increase the success rate of drug development.  相似文献   

16.
Plant tagnology     
Transposable elements have been used as an effective mutagen and as a tool to clone tagged genes. Insertion of a transposable element into a gene can lead to loss- or gain-of-function, changes in expression pattern, or can have no effect on gene function at all, depending on whether the insertion took place in coding or non-coding regions of the gene. Cloning transposable elements from different plant species has made them available as a tool for the isolation of tagged genes using homologous or heterologous tagging strategies. Based on these transposons, new elements have been engineered bearing reporter genes that can be used for expression analysis of the tagged gene, or resistance genes that can be used to select for knockout insertions. While many genes have been cloned using transposon tagging following traditional forward genetics strategies, gene cloning has ceased to be the rate-limiting step in the process of determining sequence–function relations in several important plant model species. Large-scale insertion mutagenesis and identification of insertion sites following a reverse genetics strategy appears to be the best method for unravelling the biological role of the thousands of genes with unknown functions identified by genome or expressed sequence tag (EST) sequencing projects. Here we review the progress in forward tagging technologies and discuss reverse genetics strategies and their applications in different model species.  相似文献   

17.
Discovery genetics: serendipity in basic research   总被引:1,自引:0,他引:1  
The role of serendipity in science has no better example than the discovery of spontaneous mutations that leads to new mouse models for research. The approach of finding phenotypes and then carrying out genetic analysis is called forward genetics. Serendipity is a key component of discovering and developing mice with spontaneous mutations into animal models of human disease. In this article, the role of serendipity in discovering and developing mouse models is described within a program at The Jackson Laboratory that capitalizes on serendipitous discoveries in large breeding colonies. Also described is how any scientists working with mice can take advantage of serendipitous discoveries as a research strategy to develop new models. Spontaneous mutations cannot be planned but happen in all research mouse colonies and are discovered as unexpected phenotypes. The alert scientist or technician can rationally exploit such chance observations to create new research opportunities.  相似文献   

18.
Barrientos A 《IUBMB life》2003,55(2):83-95
The yeast Saccharomyces cerevisiae is an excellent model for gaining insights into the molecular basis of human mitochondrial disorders, particularly those resulting from impaired mitochondrial metabolism. Yeast is a very well characterized system and most of our current knowledge about mitochondrial biogenesis in humans derives from yeast genetics and biochemistry. Systematic yeast genome-wide approaches have allowed for the identification of human disease genes. In addition, the functional characterization of a large number of yeast gene products resident in mitochondria has been instrumental for the later identification and characterization of their human orthologs. Here I will review the molecular and biochemical characterization of several mitochondrial diseases that have been ascribed to mutations in genes that were first found in yeast to be necessary for the assembly of the mitochondrial respiratory chain. The usefulness of yeast as a model system for human mitochondrial disorders is evaluated.  相似文献   

19.
Long a major focus of genetic research and breeding, sunflowers (Helianthus) are emerging as an increasingly important experimental system for ecological and evolutionary studies. Here, we review the various attributes of wild and domesticated sunflowers that make them valuable for ecological experimentation and describe the numerous publicly available resources that have enabled rapid advances in ecological and evolutionary genetics. Resources include seed collections available from germplasm centres at the USDA and INRA, genomic and EST sequences, mapping populations, genetic markers, genetic and physical maps and other forward‐ and reverse‐genetic tools. We also discuss some of the key evolutionary, genetic and ecological questions being addressed in sunflowers, as well as gaps in our knowledge and promising areas for future research.  相似文献   

20.
Gundry M  Vijg J 《Mutation research》2012,729(1-2):1-15
DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a brief overview of new sequencing platforms that are currently waiting in the wings to advance this exploding field even further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号