首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Lactaptin, the proteolytic fragment of human milk kappa-casein, induces the death of various cultured cancer cells. The mechanisms leading to cell death after lactaptin treatment have not been well characterized. In this study the in vivo and in vitro effects of a recombinant analogue of lactaptin (RL2) were examined. Following treatment with the recombinant analogue of lactaptin strong caspase -3, -7 activation was detected. As a consequence of caspase activation we observed the appearance of a sub-G1 population of cells with subdiploid DNA content. Dynamic changes in the mRNA and protein levels of apoptosis-related genes were estimated. No statistically reliable differences in p53 mRNA level or protein level were found between control and RL2-treated cells. We observed that RL2 constitutively suppressed bcl-2 mRNA expression and down regulated Bcl-2 protein expression in MDA-MB-231 cells. We demonstrated that RL2 penetrates cancer and non-transformed cells. Identification of the cellular targets of the lactaptin analogue revealed that α/β-tubulin and α-actinin-1 were RL2-bound proteins. As the alteration in cellular viability in response to protein stimulus can be realized not only by way of apoptosis but also by autophagy, we examined the implications of autophagy in RL2-dependent cell death. We also found that RL2 treatment induces LC3-processing, which is a hallmark of autophagy. The autophagy inhibitor chloroquine enhanced RL2 cytotoxicity to MDA-MB-231 cells, indicating the pro-survival effect of RL2-dependent autophagy. The antitumour potential of RL2 was investigated in vivo in mouse xenografts bearing MDA-MB-231 cells. We demonstrated that the recombinant analogue of lactaptin significantly suppressed the growth of solid tumours. Our results indicate that lactaptin could be a new molecule for the development of anticancer drugs.  相似文献   

2.
3.
Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.  相似文献   

4.
Etk is a non-receptor tyrosine kinase, which provides a strong survival signal in human prostate cancer cells. Src, another tyrosine kinase that cross-activates with Etk, has been shown to play an important role in prostate cancer metastasis. Herein, we discovered a new class of Etk inhibitors. Within those inhibitors, CTA095 was identified as a potent Etk and Src dual inhibitor. CTA095 was found to induce autophagy as well as apoptosis in human prostate cancer cells. In addition, CTA095 inhibited HUVEC cell tube formation and “wound healing” of human prostate cancer cells, implying its role in inhibition of angiogenesis and metastasis of human prostate cancer. More interestingly, CTA095 could overcome Src inhibitor resistance in prostate cancer cells. It induces apoptosis in Src inhibitor resistant prostate cancer cells, likely through a mechanism of down regulation of Myc and BCL2. This finding indicates that simultaneously targeting Etk and Src could be a promising approach to overcome drug resistance in prostate cancer.  相似文献   

5.
Lipocalin-2 (Lcn-2) is an acute-phase protein that has been implicated in diverse physiological processes in mice, including: apoptosis, ion transport, inflammation, cell survival, and tumorigenesis. This study characterized the biological activity of Lcn-2 in human endometrial carcinoma cells (RL95-2). Exposure of RL95-2 cells to Lcn-2 for >24 h reduced Lcn-2-induced cell apoptosis, changed the cell proliferation and up-regulated cytokine secretions, including: interleukin-8 (IL-8), inteleukin-6 (IL-6), monocyte chemotatic protein-1 (MCP-1) and growth-related oncogene (GRO). However, IL-8 mRNA and protein levels were dramatically increased in Lcn-2-treated RL95-2 cells. To determine the IL-8 effect on Lcn-2-treated RL95-2 cells was our major focus. Adding recombinant IL-8 (rIL-8) resulted in decreased caspase-3 activity in Lcn-2-treated cells, whereas the addition of IL-8 antibodies resulted in significantly increased caspase-3 activity and decreased cell migration. Data indicate that IL-8 plays a crucial role in the induction of cell migration. Interestingly, Lcn-2-induced cytokines, secretion from RL95-2 cells, could not show the potent cell migration ability with the exception of IL-8. We conclude that Lcn-2 triggered cytokine secretions to prevent RL95-2 cells from undergoing apoptosis and subsequently increased cell migration. We hypothesize that Lcn-2 increased cytokine secretion by RL95-2 cells, which in turn activated a cellular defense system. This study suggests that Lcn-2 may play a role in the human female reproductive system or in endometrial cancer.  相似文献   

6.
《Autophagy》2013,9(2):253-255
Polygonatum cyrtonema lectin (PCL), a mannose/sialic acid-binding lectin, has been reported to display remarkable inhibitory and cytotoxic activity toward cancer cells. However, the precise mechanism by which PCL induces tumor cell death is still only rudimentarily understood. In the present study, PCL was shown to markedly inhibit the growth of human melanoma A375 cells with concomitant low toxicity to the normal melanocytes. Subsequently, PCL was found to simultaneously induce A375 cell apoptosis and autophagy. The mechanism of apoptosis following treatment with PCL involved regulation of Bax, Bcl-xL and Bcl-2 proteins, which then caused collapse of the mitochondrial membrane potential, leading to cytochrome c release and caspase activation. The treatment with PCL also abrogated the glutathione antioxidant system, and induced mitochondria to generate massive ROS accumulation, which subsequently resulted in p38 and p53 activation. Further experimental data confirmed that the ROS-p38-p53 pathway could be involved in the stimulation of autophagy, suggesting that autophagy may play a death-promoting role via the above-mentioned apoptotic pathway. In conclusion, these findings indicate that PCL induces both apoptosis and autophagy in cancer cells through a mitochondria-mediated ROS-p38-p53 pathway.  相似文献   

7.
Tubulysin A (tubA) is a natural product isolated from a strain of myxobacteria that has been shown to depolymerize microtubules and induce mitotic arrest. The potential of tubA as an anticancer and antiangiogenic agent is explored in the present study. tubA shows potent antiproliferative activity in a panel of human cancer cell lines irrespective of their multidrug resistance properties. It induces apoptosis in cancer cells but not in normal cells and shows significant potential antiangiogenic properties in several in vitro assays. It is efficacious in initial animal studies using a hollow fibre assay with 12 different human tumour cell lines. This study suggests that both in vitro and preclinical profiles of tubA may translate into clinically useful anticancer properties.  相似文献   

8.
Selective estrogen receptor modulator is a proven agent for chemoprevention and chemotherapy of cancer. Raloxifene, a mixed estrogen agonist/antagonist, was developed to prevent osteoporosis and potentially reduce the risk of breast cancer. In this study, we examined the effect of raloxifene on the TSU-PR1 cell line. This cell line was originally reported to be a prostate cancer cell line, but recently it has been shown to be a human bladder transitional cell carcinoma cell line. The TSU-PR1 cell line contains high levels of estrogen receptor beta. Following treatment with raloxifene, evidence of apoptosis, including change in nuclear morphology, DNA fragmentation, and cytochrome c release, was observed in a dose-dependent manner in the TSU-PR1 cells (10(-9) to 10(-6) m range). We observed no detectable change in the steady-state levels of Bax, Bcl-2, and Bcl-X(L) following raloxifene treatment. However, raloxifene induced caspase-dependent cleavage of BAD to generate a 15-kDa truncated protein. Overexpression of a double mutant BAD resistant to caspase 3 cleavage blocked raloxifene-induced apoptosis. These results demonstrate that raloxifene induces apoptosis through the cleavage of BAD in TSU-PR1 cells. This molecular mechanism of apoptosis suggests that raloxifene may be a therapeutic agent for human bladder cancer.  相似文献   

9.
Sodium selenite (Na2SeO3, SSE) is an inorganic Se compound that is widely used in cancer chemoprevention studies. SSE has been shown to have anti-proliferative effects on several types of human cancer cells, but its effect on osteosarcoma cells has thus far not been reported. In this study, the cytotoxic effect of SSE on osteosarcoma cells U2OS was investigated in vitro and found to be higher than on comparable non-cancer cell lines 293 and L6. Treatment with SSE decreased cell growth in a dose- and time-dependent manner and altered cellular morphology. SSE also inhibited cell viability by inducing apoptosis, as evidenced by the formation of apoptotic bodies, generation of reactive oxygen species (ROS), and accumulation of cells during the advanced phase of apoptosis. SSE-induced apoptosis correlated with the activation of CASP 3, downregulation of BCL-2, and upregulation of P53 and PTEN in U2OS cells. These results indicated that SSE induces apoptosis in U2OS cells mainly through an ROS-mediated caspase pathway. This is the first report to show a possible mechanism of the anti-proliferative effect of SSE for the prevention of osteosarcoma in cell culture models.  相似文献   

10.
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells.  相似文献   

11.
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.  相似文献   

12.
INTRODUCTION: 2-Methoxyestradiol (2ME2), a natural endogenous product of estradiol (E2) metabolism, has been shown to be a selective apoptotic agent for cancer cells but not for normal cells. In this study, we determined that 2ME2 counteracts E2-stimulated cell growth and induces apoptosis in ovarian carcinoma cells. In addition, we demonstrate that 2ME2 induces apoptosis via p38 and phospho-Bcl2 pathway. METHODS: 2ME2 and/or E2 were administered to the OVCAR-3 (human ovarian cancer) cell line. Cell growth inhibition was analyzed by [3H] Thymidine incorporation assay and DNA fluorometric assay. Cell apoptosis was tested by DNA fragmentation analysis and FACS. The signaling pathway was determined by a series of biochemical assays. RESULTS: 2ME2 inhibited estradiol-stimulated cell growth and induced apoptosis in an ovarian carcinoma cell line. MAPK and p38, but not JNK, were found to be critical mediators in this process. Expression of a dominant negative mutant of p38 kinase or p38 specific inhibitor, SB 203580, almost completely blocked the process. Furthermore, Bcl-2 phosphorylation was required for 2ME2-induced effects. CONCLUSION: Our data suggest that 2ME2 inhibits E2-stimulated proliferation and induces apoptosis in ovarian carcinoma cells. Furthermore, activation of p38 and phosphorylation of Bcl-2 plays a critical role in the mechanism. 2ME2 therefore, may have a clinical application for the treatment of ovarian cancer.  相似文献   

13.
The aerial parts of Saururus chinensis (SC) have been used for the treatment of edema, fever, jaundice, and inflammatory diseases in Korean folk medicine for centuries. However, the mechanism by which SC exerts these anti-tumorigenic activities in human prostate and breast cancer cells has not yet been fully understood. In this study, we report on the methylene chloride fraction from SC exerting cytotoxicity against prostate and breast cancer cells in a dose-dependent manner. Specifically, SC exerted the most potent cytotoxicity in LNCaP and MCF-7 cells. SC was shown to down-regulate various angiogenetic (VEGF), proliferative (Cyclin D1), anti-apoptotic (Bcl-2) gene products in these cells. SC also increased the number of annexin V-positive apoptotic bodies and the sub-G1 DNA contents of the cell cycle undergoing apoptosis through caspase-3 activation in both LNCaP and MCF-7 cells. We further confirmed that caspase-3 plays an important role in SC-induced apoptosis in LNCaP and MCF-7 cells through the use of the caspase-3 inhibitor. Moreover, we observed that SC potentiated paclitaxel-induced apoptosis in MCF-7 cells and sauchinone is a major active constituent of SC, which could induce apoptosis in the cells. Taken together, our data provide the evidence that SC induces apoptosis depending on caspase-3 activation and overcomes the natural biological resistance to chemotherapy found in human prostate and breast cancer cells.  相似文献   

14.
We recently isolated and characterized a human milk peptide, lactaptin, which induced apoptosis of cultured human MCF-7 cells. Lactaptin was identified as a proteolytic fragment of human kappa-casein. Here, we generated two recombinant analogs of the peptide, RL1 and RL2, containing truncated and complete amino acid sequences of lactaptin, respectively. Analogs were produced in E.coli, purified and assayed for biological activity on cultured human MCF-7 cells. RL1 was shown to induce only a small decrease in cell viability, whereas RL2 lowered the viability of MCF-7 cells by 60%. This reduction in MCF-7 cell viability was associated with apoptosis, which was indicated by phosphatidilserine externalization and caspase-7 activation. The viability of A549 and Hep-2 cells was also reduced by RL2, albeit to a lesser degree than seen with MCF-7 cells; this reduced viability was not accompanied by apoptosis. Non-malignant human mesenchymal stem cells (MSC) were completely resistant to RL2 action.  相似文献   

15.
It has been shown that p53 induces cell apoptosis and the Bcl-2 family plays key roles in this process. However, the molecular mechanism of p53 apoptotic pathway is still unclear. Here, we show that overexpression of exogenous wild-type p53 induced apoptosis in lung cancer cells and high metastasis potential cells had a faster rate of apoptosis than low metastasis potential cells. The expression of pro-apoptotic gene BNIP3 was increased significantly both in Anip973 and 95D cell lines which have high metastasis ability, but not AGZY83-a or little increased in 95C cell lines which possess low metastasis ability. Overexpression of BNIP3 increases apoptotic rate induced by p53 in AGZY83-a cells. Blocking the expression of BNIP3 by siRNA in Anip973 cells decreased apoptotic rate mediated by p53. Taken together, these data suggest that high level expression of BNIP3 mediated rapid apoptosis that was triggered by p53 in lung cancer cells.  相似文献   

16.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

17.
Benzamide riboside (BR) is a novel anticancer agent exhibiting pronounced activity against several human tumor cell lines via the inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH), thereby restricting the biosynthesis of guanylates. Although it has been demonstrated that BR inhibits IMPDH and induces apoptosis, however, not much attention has been directed to the mechanism of apoptosis induction by this compound. The purpose of the present investigation was to investigate the mechanism of cytotoxicity induced by BR in human lung cancer cells. Non-small cell lung cancer [NSCLC] is the most prevalent type of lung cancer especially in India, and displays resistance to anticancer treatment. The results reveal that BR at a dose of 50 microM induces apoptosis in NSCLC H520 cells. This was ascertained by alteration in cellular morphology, TUNEL assay and flow cytometry. While Bax protein level was unaffected there was down regulation of anti-apoptotic Bcl-2 protein and up regulation of p53 as observed by Western blotting. Induction of apoptosis was accompanied by significant increase in caspase-3 activity. BR is a potent growth inhibitory pro-drug rationally synthesized to mimic NAD and inhibits PARP at high concentrations when assayed in permeabilized leukemic cells. Our observations showed that increased caspase-3 activity was accompanied by PARP cleavage. We also observed release of cytochrome c from mitochondria to the cytosol whereas no change was seen in the levels of apoptosis inducing factor (AIF). These findings indicate that BR induces apoptosis in H520 cells via the intrinsic mitochondrial pathway.  相似文献   

18.
Although surfactin is able to inhibit cancer cell proliferation and to induce cancer cell apoptosis, the molecular mechanism responsible for this process remain elusive. In this study, the signaling network underlying the apoptosis of human hepatoma (HepG2) cells induced by surfactin was investigated. It is found that the reaction oxygen species (ROS) production and intracellular calcium ([Ca2+]i) accumulation are both induced HepG2 cells apoptosis. The [Ca2+]i exaltation was partly depended on the Ca2+ release from inositol 1,4,5-trisphosphate (IP3) and ryanodine (Ry) receptors channels, which both triggered endoplasmic reticulum stress (ERS). The results showed that surfactin induced the ROS production and ROS production led to ERS. The occurrence of ERS increased the [Ca2+]i level and the processes associated with blocking extracellular signal-regulated kinase (ERK) pathway. According to a comprehensive review of all the evidence, it is concluded that surfactin induces apoptosis of HepG2 cells through a ROS–ERS–Ca2+ mediated ERK pathway.  相似文献   

19.
Previous studies have suggested that 1,25(OH)2D3, the active form of vitamin D3, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D3 has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH)2D3 induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH)2D3 failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D3.  相似文献   

20.
Roscovitine (Rosc) and purvalanol (Pur) are competitive inhibitors of cyclin-dependent kinases (CDKs) by targeting their ATP-binding pockets. Both drugs are shown to be effective to decrease cell viability and dysregulate the ratio of pro- and anti-apoptotic Bcl-2 family members, which finally led to apoptotic cell death in different cancer cell lines in vitro. It was well established that Bcl-2 family members have distinct roles in the regulation of other cellular processes such as endoplasmic reticulum (ER) stress. The induction of ER stress has been shown to play critical role in cell death/survival decision via autophagy or apoptosis. In this study, our aim was to investigate the molecular targets of CDK inhibitors on ER stress mechanism related to distinct cell death types in time-dependent manner in HeLa cervical cancer cells. Our results showed that Rosc and Pur decreased the cell viability, cell growth and colony formation, induced ER stress-mediated autophagy or apoptosis in time-dependent manner. Thus, we conclude that exposure of cells to CDK inhibitors induces unfolded protein response and ER stress leading to autophagy and apoptosis processes in HeLa cervical cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号