首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive symbioses between wood-boring insects and fungi are emerging as a new and currently uncontrollable threat to forest ecosystems, as well as fruit and timber industries throughout the world. The bark and ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) constitute the large majority of these pests, and are accompanied by a diverse community of fungal symbionts. Increasingly, some invasive symbioses are shifting from non-pathogenic saprotrophy in native ranges to a prolific tree-killing in invaded ranges, and are causing significant damage. In this paper, we review the current understanding of invasive insect-fungus symbioses. We then ask why some symbioses that evolved as non-pathogenic saprotrophs, turn into major tree-killers in non-native regions. We argue that a purely pathology-centred view of the guild is not sufficient for explaining the lethal encounters between exotic symbionts and naive trees. Instead, we propose several testable hypotheses that, if correct, lead to the conclusion that the sudden emergence of pathogenicity is a new evolutionary phenomenon with global biogeographical dynamics. To date, evidence suggests that virulence of the symbioses in invaded ranges is often triggered when several factors coincide: (i) invasion into territories with naive trees, (ii) the ability of the fungus to either overcome resistance of the naive host or trigger a suicidal over-reaction, and (iii) an 'olfactory mismatch' in the insect whereby a subset of live trees is perceived as dead and suitable for colonization. We suggest that individual cases of tree mortality caused by invasive insect-fungus symbionts should no longer be studied separately, but in a global, biogeographically and phylogenetically explicit comparative framework.  相似文献   

2.
1 Natural and recurring disturbances caused by fire, native forest insects and pathogens have interacted for millennia to create and maintain forests dominated by seral or pioneering species of conifers in the interior regions of the western United States and Canada. 2 Changes in fire suppression and other factors in the last century have altered the species composition and increased the density of trees in many western forests, leading to concomitant changes in how these three disturbance agents interact. 3 Two‐ and three‐way interactions are reviewed that involve fire, insects and pathogens in these forests, including fire‐induced pathogen infection and insect attack, the effects of tree mortality from insects and diseases on fuel accumulation, and efforts to model these interactions. 4 The emerging concern is highlighted regarding how the amount and distribution of bark beetle‐caused tree mortality will be affected by large‐scale restoration of these fire‐adapted forest ecosystems via prescribed fire. 5 The effects of fire on soil insects and pathogens, and on biodiversity of ground‐dwelling arthropods, are examined. 6 The effects of fire suppression on forest susceptibility to insects and pathogens, are discussed, as is the use of prescribed fire to control forest pests.  相似文献   

3.
The value of healthy forest ecosystems is well known and trees in these systems form symbioses with a variety of living organisms. This review focuses on literature pertaining to the potential interactions of arboreal yeast endophytes with trees and their associated insects. Although very little is known about the symbioses of arboreal yeast endophytes, indications are that some of these unicellular fungi produce plant-growth promoting phytohormones, while others are antagonistic towards phytopathogens or are capable of producing pheromones that affect the behavior of insect herbivores. However, more research needs to be conducted to fully understand the role of arboreal yeast endophytes in ecosystem processes.  相似文献   

4.
As in mammals, insect health is strongly influenced by the composition and activities of resident microorganisms. However, the microbiota of insects is generally less diverse than that of mammals, allowing microbial function in insects to be coupled to individual, identified microbial species. This trait of insect symbioses facilitates our understanding of the mechanisms that promote insect-microbial coexistence and the processes by which the microbiota affect insect well-being. As a result, insects are potentially ideal models to study various aspects of interactions between the host and its resident microorganisms that would be impractical or unfeasible in mammals and to generate hypotheses for subsequent testing in mammalian models.  相似文献   

5.
Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect–plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.  相似文献   

6.
We studied the pattern of bird species richness in native and exotic forest patches in Hungary. We hypothesized that species-area relationship will depend on forest naturalness, and on the habitat specialization of bird species. Therefore, we expected strong species-area relationship in native forest patches and forest bird species, and weaker relationship in exotic forest patches containing generalist species. We censused breeding passerine bird communities three times in 13 forest patches with only native tree species, and 14 with only exotic trees in Eastern Hungary in 2003. Although most bird species (92%) of the total of 41 species occurred in both exotic and native forests, the species-area relationship was significant for forest specialist, but not for generalist species in the native forests. No relationship between bird species and area was found for either species group in the forest with exotic tree species. The comparison of native versus exotic forest patches of similar sizes revealed that only large (>100 ha) native forests harbor higher bird species richness than exotic forests for the forest specialist bird species. There is no difference between small and medium forest patches and in richness of generalist species. Thus, the species-area relationship may diminish in archipelago of exotic habitat patches and/or for habitat generalist species; this result supports the warning that the extension of exotic habitats have been significantly contributing to the decline of natural community patterns.  相似文献   

7.
Abstract:  An exotic insect, the hemlock woolly adelgid, Adelges tsugae Annand (Hem., Adelgidae), is spreading through eastern North America, killing hemlock trees [ Tsuga canadensis (L.) Carrière], and thereby impoverishing ecosystems. Adelges tsugae , like many alien invasive insects, is difficult to monitor or sample in the forest. Monitoring of A. tsugae has been hampered by lack of information about its distribution within tree crowns. In order to assist future monitoring and biocontrol of A. tsugae , this study investigates the crown distribution of A. tsugae by sampling from the entire height of mature hemlock trees in a forest with an established infestation. In addition to A. tsugae , sampling includes scale insects, which are another group of important pests on hemlock trees. This study demonstrates the utility of a randomized branch sampling (RBS) plan for monitoring both invasive insects as well as native insects that are difficult to sample. Results from the RBS show that in trees with high populations of A. tsugae , branches from the lower crown have slightly higher densities of A. tsugae than upper crown branches. In trees with low A. tsugae populations, the upper crown may have higher A. tsugae densities than the lower crown. North pointing branches also have higher densities of A. tsugae than branches pointing in other cardinal directions. Future sampling efforts for A. tsugae can take advantage of higher densities in certain portions of the crown to increase accuracy.  相似文献   

8.
Forest restoration uses active management to re-establish natural forest habitat after disturbance. However, competition from early successional species, often aggressively invasive exotic plant species, can inhibit tree establishment and forest regeneration. Ideally, restoration ecologists can plant native tree species that not only establish and grow rapidly, but also suppress exotic competitors. Allelopathy may be a key mechanism by which some native trees could reduce the abundance and impact of exotic species. Allelopathy is a recognized tool for weed management in agriculture and agroforestry, but few studies have considered how allelopathic interactions may aid restoration. Here we introduce the “Homeland Security” hypothesis, which posits that some naïve exotic species may be particularly sensitive to allelochemicals produced by native species, providing a tool to reduce the growth and impacts of invasive exotic species on reforestation. This article explores how exploiting allelopathy in native species could improve restoration success and the re-establishment of natural successional dynamics. We review the evidence for allelopathy in agroforestry systems, and consider its relevance for reforestation. We then illustrate the potential for this approach with a case study of tropical forest restoration in Panama. C4 grasses heavily invade deforested areas in the Panama Canal watershed, especially Saccharum spontaneum L. We measured the effect of leaf litter from 17 potential restoration tree species on the growth of invasive C4 grasses. We found that leaf litter from legume trees had a greater inhibitory effect on performance of S. spontaneum than did litter from non-legume trees. However, allelopathic effects varied greatly among species within tree functional groups. Further evaluation of intra- and inter-specific interactions will help to improve our selection of restoration species.  相似文献   

9.
萧氏松茎象危害与松树松脂量关系研究初报   总被引:6,自引:1,他引:5  
萧氏松茎象HylobitelusxiaoiZhang是近年来暴发性松树害虫 ,主要危害 3种松树 :湿地松 (PinuselliottiiEngelm)、火炬松 (P .taeda)、马尾松 (P .massoniaanaLamb) ,其中以湿地松受害最为严重。为明确萧氏松茎象的危害与松脂流量的关系 ,作者对萧氏松茎象危害前后 3种松树 (湿地松、马尾松、火炬松 )松脂流量变化进行了研究。结果显示 ,在松树受害植株和未受害植株间松脂总流量间存在一定差异 ,其中以马尾松松脂流量变化最大 ,对受害株和未受害株松脂流量t-测验 ,差异达到显著水平 ;而湿地松和火炬松松脂总流量在受害植株和未受害植株间没有显著差异。对上述 3种松树松脂流量随时序动态变化的分析显示 ,松脂流量在 1年中以 5月到 6月之间为松脂流量高峰期 ,此后逐渐下降 ,到 3月中旬以后松脂流量又开始上升。就松脂流量时序动态而言 ,萧氏松茎象为害对马尾松松脂流量影响最大 ,对其它2个松树影响不明显。另外 ,不同松树树种在松脂流量及其时序动态上也存在一定差异 ,其中以马尾松脂流量较高。  相似文献   

10.
Abstract.
  • 1 The herbivorous insects on twelve species of evergreen broadleafed trees were repeatedly sampled over a period of 11 months in a small relict forest on the east coast of South Africa. This extraordinarily speciose forest patch has an unusually high proportion of endemic tree species, some of which are extremely rare.
  • 2 The insect herbivore fauna (number of species) seems to be markedly depauperate compared to that reported on native, broadleafed trees from other parts of the world. Some possible reasons for this are discussed.
  • 3 The total number of herbivorous insect species on each tree species was strongly correlated with the local relative abundance of the host plant species.
  • 4 There was no relationship between the total number of insect herbivore species on each tree species and the relative taxonomic isolation of the trees. The proportion of seemingly unique (= specialist) herbivorous insect species (i.e. those that occurred on one tree species only) was greatest on taxonomically isolated trees.
  • 5 A fundamental deficiency in the interpretation of the data in this study, and of many other similar studies that report on the number of insect species on plants, is discussed, namely the lack of clarity on the closeness of the association between individual insect herbivore species and their respective host plants.
  相似文献   

11.
  • 1 High productivity in plantations of exotic tree species is achieved by management for fast growth in the absence of the full complex of co‐evolved insect herbivores. In the case of Eucalyptus, silvicultural selection for desirable wood traits is concomitant with a trade‐off against defence and a reduction of chemical and genetic diversity. These factors, combined with accidental introductions, rapid insect evolution and the emergence of new pests, increase the likelihood that future plantations will need insect pest management to maintain productivity.
  • 2 Forestry researchers have suggested that selecting for resistant genotypes may be beneficial in insect control. There are, however, significant differences between long‐lived trees and annual crops that make this approach unlikely to be successful. This is illustrated using several examples of research into resistance to insect herbivores in trees.
  • 3 Selection for resistance to insects in trees requires an assessment of trial plantations for heritable variation in insect damage and then a determination of the effect of variation in resistance on insect population parameters. Identifying rare resistant genotypes using markers is difficult because many factors interact to produce a resistant phenotype, and phytophagous insects have less intimate relationships with their host than pathogens, resulting in weak associations with genetic loci.
  • 4 If resistant genotypes are identified, their widespread deployment in plantations might not provide satisfactory management of insect pests when the use of extensive monocultures is continued. In this paper, experiments are suggested that would explore the effectiveness of polycultures or chemotype mixtures with respect to ameliorating the damage of insects on plantation productivity. In addition, mitigating the effects of some insects on plantation productivity by maintaining vigour of fast‐growing eucalypts should be considered.
  相似文献   

12.
Invasion by alien organisms is a common worldwide phenomenon, and many alien species invade native communities. Invasion by alien species is especially likely to occur on oceanic islands. To determine how alien species become integrated into island plant–insect associations, we analyzed the structure of tree–beetle associations using host plant records for larval feeding by wood-feeding beetles (Coleoptera: Cerambycidae) on the oceanic Ogasawara Islands in the northwestern Pacific Ocean. The host plant records comprised 109 associations among 28 tree (including 8 alien) and 26 cerambycid (including 5 alien) species. Of these associations, 41.3% involved at least one alien species. Most native cerambycid species feed on host trees that have recently died. Alien trees were used by as many native cerambycid species (but by significantly more alien cerambycid species) as were native trees. Native cerambycid species used as many alien tree species (but significantly more native tree species) as did alien cerambycids. Thus, we observed many types of interactions among native and alien species. A network analysis revealed a significant nested structure in tree–cerambycid associations regardless of whether alien species were excluded from the analysis. The original nested associations on the Ogasawara Islands may thus have accepted alien species.  相似文献   

13.
Australia is unique in having two highly diverse plant genera, Eucalyptus and Acacia, that dominate the vegetation on a continent‐wide scale. The recent shift in plantation forestry away from exotic Pinus radiata to native Eucalyptus species has resulted in much more extensive exchange of biota between native forest and plantation ecosystems than exchange in the past with plantations of exotic species. Growing numbers of hectares are being planted to Eucalyptus globulus across Australia, and plantations are providing resources and corridors for native biota. The present paper focuses on both the benefits and risks of having large‐scale forestry plantations of native species that are closely related to dominant native taxa in local forests. At least 85 species of insects have been recorded as pests of Eucalyptus plantations around Australia; the vast majority of these have been insects using the same host species, or closely related taxa, in native forests. Plantations of native species may also benefit from closely related local forests through the presence of: (i) the diverse array of ectomycorrhizal fungi favourable for tree growth; (ii) natural enemies harboured in native habitats; and (iii) recruitment of other important mutualists, such as pollinators. Exchanges work in two directions: plantations are also likely to influence native forests through the large amount of insect biomass production that occurs in outbreak situations, or through the introduction or facilitation of movements for insects that are not native to all parts of Australia. Finally, older plantations in which trees flower may exchange genes with surrounding forest species, given the high degree of hybridization exhibited by many Eucalyptus species. This is an aspect of exchange for which few data have been recorded. In summary, because of Australia’s unique biogeography, plantation forestry using eucalypt species entails exchanges with natural habitats that are unparalleled in scale and diversity in any other part of the world. More exchanges are likely as plantations occupy greater area, and as the time under cultivation increases.  相似文献   

14.
Many native herbivores are known to attack exotic plants, and we can expect these interactions to occur with increasing frequency in coming years as invasive plants become naturalized and new invaders arrive in native communities. In some cases, evolutionary biologists and ecologists have learned a great deal from insects adapting to novel hosts. However, there is more to be learned and we suggest that the ecological study of exotic host colonization by native insects has been impeded by a lack of focus in the questions being asked, and also from overlap with other areas of plant–insect ecology, including the study of specialization. In the present paper, a conceptual model is described for the colonization of a novel host‐plant, which focuses on the relationship between occupancy and availability. Occupancy is the fraction of patches of novel hosts that are utilized by an herbivore, and availability is the abundance or presence of a novel host on the landscape. Considering the slope of that relationship (between occupancy and availability), hypotheses are suggested that involve dispersal and, most important, population growth rate of an insect herbivore associated with an exotic host. A focus on the occupancy–availability relationship highlights the strengths and weaknesses of common experimental approaches, such as preference–performance experiments. Suggestions for future work are offered that include integration with evolutionary theory and exploration of more complex demographic and ecological scenarios.  相似文献   

15.
Pest insects lead to excessive agricultural and therefore economical losses on crops worldwide. These insects have to withstand toxic molecules that are inherent to plant defences, as well as those that are produced and introduced by humans in the form of insecticides. In recent years, research on insect–microbe symbioses has recognized that microbial symbionts may play a role protecting against these toxins, leading to a form of defensive symbiosis between the pest insect and different types of microorganisms that we term detoxifying symbioses. In this minireview, we will highlight well‐characterized and emerging insect model systems of detoxifying symbioses and assess how the microorganisms influence the host's success.  相似文献   

16.
Associations between fungal tree pathogens and insects have been recognized for at least 100 years. An important group of these fungi, termed ‘ophiostomatoid fungi’ on account of their morphological similarity, are represented by genera in the families Ceratocystidaceae and Ophiostomataceae. Associations between these fungi, tree-colonizing insects, and host trees have been actively researched since their first discovery. Human activities have led to the global movement of fungi from both families, resulting in the establishment of new and sometimes damaging associations between these fungi, insects and trees. Recent ‘black swan’ events have resulted in an unprecedented increase of ambrosia and bark beetle-associated diseases of forest and fruit trees. We revisit some of the most important emergent diseases caused by the ophiostomatoid fungi, outline the reasons behind the emergence of these diseases, and consider long-term prospects regarding the threats that they pose to forestry and agriculture.  相似文献   

17.
The taungya agro‐forestry system is an under‐researched means of forest restoration that may result in high tree diversity. Within a forest reserve in Ghana, the forest core and its surrounding Teak‐ and Cedrela‐taungya on logged, cropped and burned land were mapped with ALOS satellite imagery. Native trees, seedlings and saplings were enumerated in 70 random, nested plots, equally divided between forest and taungya. The native tree regeneration was assessed by species richness (SR), Shannon‐Wiener Index (SWI), Shannon Evenness Index (SEI) and species density (SeD) for seedlings, saplings and trees separately and combined and subsequently correlated with canopy covers (CC) in taungya. As anticipated, the taungya diversity was lower than the forest diversity but higher than reported from nontaungya exotic plantations. In the forest, the diversity of native trees increased from seedlings through saplings to trees. The reverse was found in the taungya. Taungya seedling diversity was not significantly different from the forest, while the sapling and tree diversity were significantly lower. Weak correlations of CC with SR, SWI, SEI and SeD were found. Our results suggest the need for treatment to maintain the tree diversity beyond the seedling stage in the taungya.  相似文献   

18.
19.
Giffard B  Corcket E  Barbaro L  Jactel H 《Oecologia》2012,168(2):415-424
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of ‘associated’ plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.  相似文献   

20.
1. Competitive and synergistic interactions directly or indirectly drive community dynamics of herbivorous insects. Novel interactions between non-native and native insects are unpredictable and not fully understood. 2. We used manipulative experiments on mature red spruce trees to test interactions between a non-native phloem feeding insect, the brown spruce longhorn beetle (BSLB), and an outbreaking native defoliator, the spruce budworm. We subjected treatment trees to defoliation by three densities of spruce budworm larvae. Treatment trees were: stressed by (i) girdling (to mimic beetle feeding) or (ii) girdling + BSLB before spruce budworm larvae were introduced on branches in sleeve cages. Budworm larvae then fed on foliage and developed to pupation. We assessed all branches for budworm performance, defoliation, shoot production and shoot growth. 3. Shoot length did not differ in response to stress from girdling or BSLB infestation. Neither stress from girdling, nor interactions with BSLB feeding affected spruce budworm performance or defoliation. Intraspecific impacts on performance and defoliation in relation to budworm density were stronger than the effects of tree stress. 4. Prior infestation of red spruce by BSLB in our experimental set-up did not influence spruce budworm performance. BSLB is a successful invader that has blended into its novel ecological niche because of ecological and phylogenetic similarities with a native congener, Tetropium cinnamopterum. 5. Outbreaks by BSLB will not likely impede or facilitate spruce budworm outbreaks if they co-occur. It would be useful to evaluate the reverse scenario of BSLB success after defoliation stress by spruce budworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号