首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In some environments, species may exhibit trophic plasticity, which allows them to extend beyond their assigned functional group. For Gammarus minus, a freshwater amphipod classified as a shredder or detritivore, cave populations have been observed consuming heterotrophs as well as shredding leaves, and therefore may be exhibiting trophic plasticity. To test this possibility, we examined the C and N stable isotope and C/N ratios for cave and spring populations of G. minus. A 15-day feeding experiment using leaves and G. minus from a spring population established that the diet-tissue discrimination factor was 3.2 ‰ for δ15N. Cave G. minus were 8 ‰ higher in δ15N relative to cave leaves, indicating they did not derive nitrogen from leaves, whereas field collected spring populations were 2–3 ‰ higher than spring leaves, indicating that they did. Cave G. minus were 2.6 ‰ higher in δ15N than the cave isopod, Caecidotea holsingeri. Relative to spring populations, Organ Cave G. minus were 15N enriched by 6 ‰, suggesting they occupied a different trophic level, or incorporated an isotopically distinct N source. While stable isotopes cannot tell what the cave G. minus are eating, the isotopes certainly show that G. minus are not eating leaves and are trophically distinct form the surface populations. Differences in C/N ratios were observed, but reflect the size of the G. minus examined and not feeding group or habitat. The isotope data strongly support the hypothesis that cave populations of G. minus have become generalist or omnivorous by including animal protein in their diet.  相似文献   

2.
Discerning the mechanisms responsible for emergent evolutionary radiations, community assembly, and the maintenance of diversity is necessary for understanding the evolutionary ecology of species interactions in changing landscapes. These processes can be driven by stochastic (neutral) factors, such as genetic drift, or deterministic (non-neutral) factors, such as the external environment and heritable phenotypic variation. Neutral and non-neutral factors can shape species interactions, but the relative influence of these different processes on antagonistic relationships is not well understood. We leveraged the recent discovery of a novel herbivore (Caloptilia triadicae) on invasive Chinese tallow (Triadica sebifera) to investigate the nature and relative importance of different factors influencing plant–antagonist interactions. We assessed measures of host attributes, herbivore demography and herbivory across the North American range of Triadica according to geography, environmental variation, and host genetic variation. We found that leaf toughness corresponded to genetic variation in Triadica, longitude, and mean temperature. Genetic variation in Triadica was the strongest predictor of herbivore abundance, especially for the early leaf mining stages, though herbivore abundance also corresponded to longitude. Model variables did not explain leaf damage, which was driven by interactions with late-stage larvae. Trends in herbivore demography were not consistent with previously reported geographic patterns of Triadica genetic variation related to tannin defense, but were consistent with patterns revealed by other studies of Triadica phenolic compounds and C:N, as well as low sensitivity of endophagous herbivores to tannins in the absence of parasitoids. Our findings suggest that even simple geographic mosaics of genetic and environmental variation, as well as distance-dependent dispersal, can influence the establishment and trajectory of novel species interactions.  相似文献   

3.
Enemy release is a commonly accepted mechanism to explain plant invasions. Both the diploid Leucanthemum vulgare and the morphologically very similar tetraploid Leucanthemum ircutianum have been introduced into North America. To verify which species is more prevalent in North America we sampled 98 Leucanthemum populations and determined their ploidy level. Although polyploidy has repeatedly been proposed to be associated with increased invasiveness in plants, only two of the populations surveyed in North America were the tetraploid L. ircutianum. We tested the enemy release hypothesis by first comparing 20 populations of L. vulgare and 27 populations of L. ircutianum in their native range in Europe, and then comparing the European L. vulgare populations with 31 L. vulgare populations sampled in North America. Characteristics of the site and associated vegetation, plant performance and invertebrate herbivory were recorded. In Europe, plant height and density of the two species were similar but L. vulgare produced more flower heads than L. ircutianum. Leucanthemum vulgare in North America was 17 % taller, produced twice as many flower heads and grew much denser compared to L. vulgare in Europe. Attack rates by root- and leaf-feeding herbivores on L. vulgare in Europe (34 and 75 %) was comparable to that on L. ircutianum (26 and 71 %) but higher than that on L. vulgare in North America (10 and 3 %). However, herbivore load and leaf damage were low in Europe. Cover and height of the co-occurring vegetation was higher in L. vulgare populations in the native than in the introduced range, suggesting that a shift in plant competition may more easily explain the invasion success of L. vulgare than escape from herbivory.  相似文献   

4.
Plants damaged by herbivores emit blends of volatile organic compounds (VOCs) that attract the herbivore’s natural enemies. Most work has focussed on systems involving one plant, one herbivore and one natural enemy, though, in nature, plants support multiple herbivores and multiple natural enemies of these herbivores. Our study aimed to understand how different aphid natural enemies respond to aphid-induced VOCs, and whether attraction of the natural enemies that responded to aphid-induced VOCs was altered by simultaneous damage by a chewing herbivore. We used a model system based on Brassica juncea (Brassicaceae), Myzus persicae (Hemiptera: Aphididae) and Plutella xylostella (Lepidoptera: Plutellidae). Ceraeochrysa cubana (Neuroptera: Chrysopidae) did not show preferences for any plant odour, while Cycloneda sanguinea (Coleoptera: Coccinellidae) responded to undamaged plants over air but not to aphid-damaged plants over undamaged plants. Therefore, no further tests were carried out with these two species. Chrysoperla externa (Neuroptera: Chrysopidae) preferred aphid-damaged plants, but not caterpillar-damaged plants, over undamaged plants, and preferred plants damaged by both herbivores over both undamaged plants and aphid-damaged plants. When tested for responses against undamaged plants, Aphidius colemani (Hymenoptera: Braconidae) preferred aphid-damaged plants but not plants damaged by caterpillars. Plants damaged by both herbivores attracted more parasitoids than undamaged plants, but not more than aphid-damaged plants. Thus, multiply damaged plants were equally attractive to A. colemani and more attractive to C. externa than aphid-damaged plants, while C. cubana and C. sanguinea did not respond to aphid-induced VOCs, highlighting how different natural enemies can have different responses to herbivore-damaged plants.  相似文献   

5.
Native generalist herbivores might limit plant invasion by consuming invading plants or enhance plant invasion by selectively avoiding them. The role of herbivores in plant invasion has been investigated in relation to plant native/introduced status, however, a knowledge gap exists about whether food selection occurs according to native/introduced status or to species. We tested preference of the native herbivore white-tailed deer (Odocoileus virginianus) for widespread and frequently occurring invasive introduced and native plants in the northeastern United States. Multiple-choice deer preference trials were conducted for the species and relative preference was determined using biomass consumption and feeding behavior. While more native than introduced plant biomass was consumed overall, deer food selection varied strongly by plant species. Results show consistent deer avoidance of several invasive introduced plants (Alliaria petiolata, Berberis thunbergii, and Microstegium vimineum) and a native plant (Dennstaedtia punctilobula). Other invasive introduced plants (Celastrus orbiculatus, Ligustrum vulgare, and Lonicera morrowii) and a native plant (Acer rubrum) were highly preferred. These results provide evidence that herbivore impacts on plant invaders depend on plant species palatability. Consequently, herbivore selectivity likely plays an important role in the invasion process. To the extent that herbivory impacts population demographics, these results suggest that native generalist herbivores promote enemy release of some plant invaders by avoiding them and contribute to biotic resistance of others by consuming them.  相似文献   

6.
Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.  相似文献   

7.
8.
Herbivore-induced defences appear ubiquitous across most biomes and habitats. Yet the direct correlation between induced changes in host plant chemistry and the population dynamics of the herbivore remain untested in many systems. In plant–herbivore interactions in the terrestrial environment, indirect or tritrophic interactions appear a successful way in which changes in the host plant chemistry induced by prior herbivory can impact on herbivore populations via increased success of natural enemies. This set of interactions remains untested in the marine system. Here, we present work from experiments using orthogonal contrasts of plants with different prior treatments (control, mechanical damage or herbivory) and the presence or absence of herbivores on the foraging behaviour of a crab, Carcinus maenas, and a fish, Lipophrys pholis. These experiments were carried out using a novel flow-through flume, i.e. as a choice chamber supplied by turbulent water from independent cue sources. Our results show that in the Ascophyllum nodosum (plant)–Littorina obtusata (herbivore) system infochemicals from induced plants can directly influence predator foraging behaviour. L. pholis was attracted to the presence of a feeding L. obtusata, but was also more attracted to odours from herbivore-induced tissue than odours from mechanically damaged or naïve A. nodosum. C. maenas was more attracted to odours from herbivore-induced tissue compared to naïve tissue, regardless of the presence of L. obtusata. This is the first demonstration of such behavioural consequences of herbivore-induced changes in plants for marine systems.  相似文献   

9.
Invasion by exotic plant species and herbivory can individually alter native plant species diversity, but their interactive effects in structuring native plant communities remain little studied. Many exotic plant species escape from their co-evolved specialized herbivores in their native range (in accordance with the enemy release hypothesis). When these invasive plants are relatively unpalatable, they may act as nurse plants by reducing herbivore damage on co-occurring native plants, thereby structuring native plant communities. However, the potential for unpalatable invasive plants to structure native plant communities has been little investigated. Here, we tested whether presence of an unpalatable exotic invader Opuntia ficus-indica was associated with the structure of native plant communities in an ecosystem with a long history of grazing by ungulate herbivores. Along 17 transects (each 1000 m long), we conducted a native vegetation survey in paired invaded and uninvaded plots. Plots that harboured O. ficus-indica had higher native plant species richness and Shannon–Wiener diversity H′ than uninvaded plots. However, mean species evenness J was similar between invaded and uninvaded plots. There was no significant correlation between native plant diversity and percentage plot cover by O. ficus-indica. Presence of O. ficus-indica was associated with a compositional change in native community assemblages between paired invaded and uninvaded plots. Although these results are only correlative, they suggest that unpalatable exotic plants may play an important ecological role as refugia for maintenance of native plant diversity in intensely grazed ecosystems.  相似文献   

10.
In this study, we assessed geographic patterns of genetic variations in nuclear and chloroplast genomes of two related native oaks in Japan, Quercus aliena and Q. serrata, in order to facilitate development of genetic guidelines for transfer of planting stocks for each species. A total of 12 populations of Q. aliena and 44 populations of Q. serrata were analyzed in this study. Genotyping of nuclear microsatellites in Q. aliena was done with only nine populations (n = 212) due to limited numbers of individuals in two populations, while all 12 populations (n = 89) were used in sequencing chloroplast DNA (cpDNA). In Q. serrata, 43 populations (n = 1032) were genotyped by nuclear microsatellite markers, while cpDNA of 44 populations (n = 350) was sequenced. As anticipated, geographic patterns detected in the variations of Q. aliena’s nuclear genome and its chloroplast haplotype distribution clearly distinguished northern and southern groups of populations. However, those of Q. serrata were inconsistent. The geographic distribution of its chloroplast haplotypes tends to show the predicted differentiation between northern and southern lineages, but geographic signals in the genetic structure of its nuclear microsatellites are weak. Therefore, treating northern and southern regions of Japan as genetically distinct transferrable zones for planting stocks is highly warranted for Q. aliena. For Q. serrata, the strong NE-SW geographic structure of cpDNA should be considered.  相似文献   

11.
To specify the taxonomic rank of form ciscaucasicus (independent species Sylvaemus ciscaucasicus, or intraspecific form of pygmy wood mouse, S. uralensis), a 402-bp the mtDNA cytochrome b gene fragment (402 bp) was examined in ciscaucasicus individuals from six geographic localities of the Caucasus and Ciscaucasus (Krasnodar krai and Adygeya Republic) and 17 S. uralensis individuals from seven localities of the Russian Plain (Saratov oblast, Smolensk oblast, Voronezh oblast, Tula oblast, Moscow oblast, Tver’ oblast, and northern Krasnodar krai). For comparison, the cytochrome b gene was partly sequenced in the samples of yellow necked, S. flavicollis (n = 2, Samara oblast), and Caucasian, S. ponticus (n = 6, Krasnodar krai), wood mice. One Mus musculus specimen from Western Europe, whose nucleotide sequences were deposed in the GenBank, was used as intergeneric outgroup. Phylogenetic trees for the forms examined were constructed based on the mtDNA sequence variation and using the neighbor joining and maximum parsimony methods. The network of the cytochrome b haplotypes was also constructed. The level of genetic divergence was evaluated using Kimura’s two-parameter algorithm. Based on the data on the sequence variation in a 402-bp mtDNA cytochrome b gene fragment, the hypothesis on the species status of the ciscaucasicus form was. The mean intergroup distances (d) between the geographic groups of S. uralensis varied from 0.0036 to 0.0152. At the same time, the distances between the pygmy wood mice and the group of S. flavicollis-S. ponticus varies in the range from 0.0860 to 0.0935, and the level of intergeneric genetic differentiation (Sylvaemus-Mus) is higher than the latter index (d = 0.142). Ciscaucasicus should be considered as geographic substitution form of S. uralensis. Furthermore, the Caucasian populations of S. uralensis (= ciscaucasicus) were characterized by a threefold lower value of intergroup genetic divergence (d = 0.0062) than the East European populations (d = 0.0179). This finding pointed to some isolation of Caucasian populations of pygmy wood mouse and depletion of their gene pool. However other molecular genetic data (similarity of nucleotide composition and consistence of the levels of intra-and intergroup distances) suggest the absence of geographic subdivision between Caucasian and East European populations of S. uralensis relative to the molecular marker examined.  相似文献   

12.
In this article, we compared the resistance of two introduced populations of Elodea nuttallii and Elodea canadensis to two different herbivores. Samples were collected from the River Rhine and River Rhône in eastern France. The two populations of E. nuttallii differed in their introduction history, whereas E. canadensis was introduced at the same time in the two sites. The Daily Food Consumption (DFC) rates of the two macrophyte populations were evaluated in no-choice experiments using the scraper Lymnaea stagnalis and the shredder Gammarus roeseli. At the same time, we assessed four plant traits: dry matter content (DMC), total nitrogen content, carbon/nitrogen ratio and total phenolic content. The two populations of E. canadensis were consumed at low levels by both the herbivores. L. stagnalis showed a higher DFC on the Rhône population of E. nuttallii than on the Rhine population. No significant difference between the two populations was established with G. roeseli, but the level of DFC was high. This result demonstrates that the assessment of plant palatability should be carried out with several generalist herbivores belonging to various feeding groups (e.g. scrapers or shredders). Although the Rhône population of E. nuttallii had higher levels of phenols than the other populations, it was consistently consumed in greater quantities than E. canadensis. Neither the phenolic contents were not effective against these herbivores, nor the levels of phenolics too low to induce an efficient resistance. The higher DMC and the lower DFC of the two populations of E. canadensis suggest that this introduced plant has co-evolved with indigenous enemies in the introduced range.  相似文献   

13.
Invasive insect herbivores have the potential to interfere with native multitrophic interactions by affecting the chemical cues emitted by plants and disrupting the attraction of natural enemies mediated by herbivore-induced plant volatiles (HIPVs). In a previous study, we found that the presence of the exotic herbivore Spodoptera littoralis on Brassica rapa plants infested by the native herbivore Pieris brassicae makes these dually-infested plants unattractive to the main parasitoid of P. brassicae, the braconid wasp Cotesia glomerata. Here we show that this interference by S. littoralis is strongly dependent on the relative densities of the two herbivores. Parasitoids were only deterred by dually-infested plants when there were more S. littoralis larvae than P. brassicae larvae on a plant. Furthermore, the blend of HIPVs emitted by dually-infested plants differed the most from HIPVs emitted by Pieris-infested plants when S. littoralis density exceeded P. brassicae density. We further found that associative learning by the parasitoid affected its preferences: attraction to dually-infested plants increased after parasitoids were presented a P. brassicae caterpillar (rewarding experience) in presence of the odor of a dually-infested plant, but not when presented a S. littoralis caterpillar (non-rewarding experience). A non-rewarding experience prior to the bioassays resulted in a general decrease in parasitoid motivation to respond to plant odors. We conclude that herbivore density and associative learning may play an important role in the foraging behavior of natural enemies in communities, and such effects should not be overlooked when investigating the ecological impact of exotic species on native food webs.  相似文献   

14.

Background

Sand rice (Agriophyllum squarrosum (L.) Moq.) is an annual shrub-like plant adapted to the mobile sand dunes in desert and semi-desert regions of Asia. It has a balanced nutrient composition with relatively high concentration of lipids and proteins, which results in its nutrition being similar to legumes. Sand rice’s proteins contain the full range of essential amino acids. However, calories content is more similar to wheat. These features together with desert stress resistance make sand rice a potential food crop resilient to ongoing climate change. It is also an important fodder crop (on young stages of growth) for cattle in arid regions of Kazakhstan. In our work, sand rice samples were collected from two distant regions of Kazakhstan as a part of the nation-wide project to determine genetic variation of the native flora.

Results

Samples were collected in western and southeastern parts of Kazakhstan separated by distances of up to 1300 km. Sequences of the nuclear ribosomal DNA ITS1-5.8S-ITS2 region and the chloroplast matK gene confirmed the identity of species defined by morphological traits. Comparison with GenBank sequences revealed polymorphic sequence positions among Kazakh populations and GenBank references, and suggested a distinction among local populations of sand rice. The phylogenetic analysis of nucleotide sequences showed a clear partition of A. squarrosum (L.) Moq. from Agriophyllum minus Fisch. & C.A. Mey, which grows in the same sand dunes environment.

Conclusions

DNA barcoding analyses of ITS and matK sequences showed a segregation of A. squarrosum from A. minus into separate clades in Maximum-Likelhood dendrograms. ITS analysis can be successfully used to characterize A. squarrosum populations growing quite distant from each other. The data obtained in this work provide the basis for further investigations on A. squarrosum population structure and may play a role in the screening of sand rice plants growing in desert and semi-desert environments of Central Asia and China.
  相似文献   

15.
Megoura crassicauda Mordvilko (Hemiptera: Aphididae) is a dominant aphid species found on Vicia sativa subsp. nigra (L.) Ehrh. (Fabaceae) in the spring. Worker ants of Formica japonica, the dominant ant species attracted to the extrafloral nectaries of V. s. nigra, often attack ladybirds (Coccinella septempunctata), which are aphid enemies. However, the workers of F. japonica do not attack or exclude M. crassicauda, the non-myrmecophilous aphid. It appears that the “bodyguard” retained by the plant guards the plant’s herbivore by attacking the herbivores’ enemies, rather than guarding the plant itself. The relationship between V. s. nigra and M. crassicauda was observed in the field to examine and evaluate the cost of parasitism. Parasitism by M. crassicauda delayed flower bud formation markedly in V. s. nigra but did not kill the plants. V. s. nigra plants that were parasitized showed a net bean production similar to that of the non-parasitized controls. The parasitism rate of M. crassicauda increased when extrafloral nectaries were used by F. japonica. These results may indicate that M. crassicauda provides V. s. nigra with benefits by preventing other serious disadvantages.  相似文献   

16.
Edge habitats create environmental gradients that affect plant community composition and herbivore behavior. Silvicultural disturbance creates edge habitat with direct (via changes in light) and indirect (via changes in herbivore behavior) consequences for the growth and survival of tree seedlings, and thus, the composition of the future forest stands. Herbivores, particularly ungulates, can be a major limiting factor in oak regeneration, and silvicultural disturbance may alter the abundance or behavior of herbivores following harvest. We measured the severity of herbivory on experimentally planted white (Quercus alba) and black oak (Quercus velutina) seedlings by white-tailed deer (Odocoileus virginianus) and eastern cottontail rabbits (Sylvilagus floridanus), as well as foliar damage from insects, across gradients created by clearcuts in a deciduous forest in Indiana, USA. Overall browse pressure on oaks was low in our study. Nonetheless, spatial variation in herbivory depended on herbivore taxa; herbivory by rabbits was highest inside harvest openings, whereas foliar damage by insects peaked in the forest. Intensity of deer herbivory was constant across the edge. In addition, we observed indirect interactions among herbivore species mediated by a seedling’s browsing history. Herbivore damage by deer was positively related to past browsing by rabbits, and foliar damage from insects was positively related to past browsing by both deer and rabbits. Increasing woody plant competition reduced herbivory on seedlings by both deer and rabbits. Given the lack of spatial variability in deer herbivory and low overall herbivory by rabbits, we suspect that interactions between timber harvesting and herbivory did not have a strong impact on oak seedlings at our study sites.  相似文献   

17.
During the first half of the twentieth century, two accidental cases of introduction of Pissodes weevils were recorded from the southern hemisphere. The weevils in South Africa were identified as the deodar weevil (Pissodes nemorensis) and those in South America as the small banded pine weevil (Pissodes castaneus). Wide distribution of the two species in their invasive range, general difficulty in identifying some Pissodes spp., and the varying feeding and breeding behaviours of the species in South Africa has necessitated better evidence of species identity and genetic diversity of both species and population structure of the species in South Africa. Barcoding and the Jerry-to-Pat region of the COI gene were investigated. Morphometric data of the South African species was analysed. Our results confirmed the introduction of only one Pissodes species of North American origin to South Africa. However, this species is not P. nemorensis, but an unrecognized species of the P. strobi complex or a hybrid between P. strobi and P. nemorensis. Only P. castaneus, of European origin, was identified from South America. We identified ten mitochondrial DNA haplotypes from South Africa with evidence of moderate genetic structure among geographic populations. Terminal leader and bole-feeding weevils did not differ at the COI locus. A single haplotype was identified from populations of P. castaneus in South America. Results of the present study will have implications on quarantine, research and management of these insect species.  相似文献   

18.
A large number of Crassostrea oysters are found in Asia-Pacific. While analyses of interspecific variation have helped to establish historical relationships among these species, studies on intraspecific variation are necessary to understand their recent evolutionary history and current forces driving population biology. We resequenced 18 and analyzed 31 mitogenomes of five Crassostrea species from China: Crassostrea gigas, Crassostrea angulata, Crassostrea sikamea, Crassostrea ariakensis, and Crassostrea hongkongensis. Our analysis finds abundant insertions, deletions, and single-nucleotide polymorphisms in all species. Intraspecific variation varies greatly among species with polymorphic sites ranging from 54 to 293 and nucleotide diversity ranging from 0.00106 to 0.00683. In all measurements, C. hongkongensis that has the narrowest geographic distribution exhibits the least sequence diversity; C. ariakensis that has the widest distribution shows the highest diversity, and species with intermediate distribution show intermediate levels of diversity. Low sequence diversity in C. hongkongensis may reflect recent bottlenecks that are probably exacerbated by human transplantation. High diversity in C. ariakensis is likely due to divergence of northern and southern China populations that have been separated without gene flow. The significant differences in mitogenome diversity suggest that the five sister species of Crassostrea have experienced different evolutionary forces since their divergence. The recent divergence of two C. ariakensis populations and the C. gigas/angulata species complex provides evidence for continued diversification and speciation of Crassostrea species along China’s coast, which are shaped by unknown mechanisms in a north–south divide.  相似文献   

19.
Plants have evolved many defenses against insect herbivores, including numerous chemicals that can reduce herbivore growth, performance, and fitness. One group of chemicals, the tropane alkaloids, is commonly found in the nightshade family (Solanaceae) and has been thought to reduce performance and fitness in insects. We examined the effects of the tropane alkaloid scopolamine, an alkaloid constituent of Datura wrightii, which is the most frequent host plant for the abundant and widespread insect herbivore Manduca sexta in the southwestern United States. We exposed caterpillars of two different species to scopolamine: M. sexta, which has a shared evolutionary history with Datura and other solanaceous plants, and Galleria mellonella, which does not. We showed that the addition of ecologically realistic levels of scopolamine to both the diet and the hemolymph of these two caterpillar species (M. sexta and G. mellonella) had no effect on the growth of either species. We also showed that M. sexta has no behavioral preference for or against scopolamine incorporated into an artificial diet. These results are contrary to other work showing marked differences in performance for other insect species when exposed to scopolamine, and provide evidence that scopolamine might not provide the broad-spectrum herbivore resistance typically attributed to it. It also helps to clarify the coevolutionary relationship between M. sexta and one of its main host plants, as well as the physiological mechanism of resistance against scopolamine.  相似文献   

20.
During a survey of endophytic fungi in the cucurbit plants collected from Henan, China, a new species, Phialemoniopsis endophytica was isolated from the lower stem of Luffa cylindrica. It differs from other Phialemoniopsis species by its cylindrical to flask-shaped phialides, falcate conidia with blunt ends, ostiolate pycnidium-like conidiomata without marginal setae and ellipsoidal chlamydospores. Multi-locus (ITS, LSU, ACT, and TUB) phylogenetic analysis confirmed that P. endophytica is distinct from other species. A synopsis of the morphological characters of the new species is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号