首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage P22 assembles a DNA-free procapsid that subsequently packages P22 DNA. To study the packaging of bacteriophage P22 DNA, attempts were made to isolate P22 capsids with a subgenome length of packaged DNA. With the use of cesium chloride buoyant density sedimentation and agarose gel electrophoresis, the following capsids with a subgenome length of packaged DNA were isolated and characterized: (i) a capsid with the solid-support-free electrophoretic mobility and radius of the DNA-free P22 procapsid; (ii) a capsid with the solid-support-free electrophoretic mobility and radius of the mature P22 bacteriophage; and (iii) a capsid with a solid-support-free electrophoretic mobility and possibly a radius intermediate to those of the procapsid and bacteriophage.  相似文献   

2.
3.
含组氨酸纯化标签的假病毒表达载体的构建与应用   总被引:1,自引:0,他引:1  
为了RNA类病毒进行核酸检测提供一种更稳定、更方便的全程监控技术,本文研究了含组氨酸纯化标签的假病毒监控内标和阳性对照的制备方法.通过基因工程手段将6个组氨酸插入MS2噬菌体包膜蛋白的β-发夹环结构中,成功构建带组氨酸纯化标签假病毒的通用表达载体.外源基因序列插入载体后,经诱导表达与镍离子亲和层析纯化后,可获得高浓度、高纯度的假病毒,在4 ℃和-20 ℃条件下,可用SM缓冲液稳定保存1年以上.  相似文献   

4.
To build a foundation for the single-molecule fluorescence microscopy of protein complexes, the present study achieved fluorescence microscopy of single, nucleic acid-free protein capsids of bacteriophage T7. The capsids were stained with Alexa 488 (green emission). Manipulation of the capsids' thermal motion was achieved in three dimensions. The procedure for manipulation included embedding the capsids in an agarose gel. The data indicate that the thermal motion of capsids is reduced by the sieving of the gel. The thermal motion can be reduced to any desired level. A semilogarithmic plot of an effective diffusion constant as a function of gel concentration is linear. Single, diffusing T7 capsids were also visualized in the presence of single DNA molecules that had been both stretched and immobilized by gel-embedding. The DNA molecules were stained with ethidium (orange emission). This study shows that single-molecule (protein and DNA) analysis is possible for both packaging of DNA in a bacteriophage capsid and other events of DNA metabolism. The major problem is the maintenance of biochemical activity.  相似文献   

5.
Conformatioiial changes during the reassembly of bacteriophage MS2 coat proteiii from guanidiiie hydrochloride have been investigated by optical rotatory dispersion. Optical rotatory dispersion aid circular dichroism data of the reassembled particles are interpreted as those of β structure. Refolding of the subunit with increasing temperature demonstrated in 2 M guauidine hydrochloride. The stabilization of this structure by hydrophobic bonds and its role in reassembly is discussed.  相似文献   

6.
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.  相似文献   

7.
Pan Y  Zhang Y  Jia T  Zhang K  Li J  Wang L 《The FEBS journal》2012,279(7):1198-1208
Recently, microRNA (miRNA)-mediated RNA interference has been developed as a useful tool in gene function analysis and gene therapy. A major obstacle in miRNA-mediated RNAi is cellular delivery, which requires an efficient and flexible delivery system. The self-assembly of the MS2 bacteriophage capsids has been used to develop virus-like particles (VLPs) for RNA and drug delivery. However, MS2 VLP-mediated miRNA delivery has not yet been reported. We therefore used an Escherichia coli expression system to produce the pre-miR 146a contained MS2 VLPs, and then conjugated these particles with HIV-1 Tat(47-57) peptide. The conjugated MS2 VLPs effectively transferred the packaged pre-miR146a RNA into various cells and tissues, with 0.92-14.76-fold higher expression of miR-146a in vitro and about two-fold higher expression in vivo, and subsequently suppressed its targeting gene. These findings suggest that MS2 VLPs can be used as a novel vehicle in miRNA delivery systems, and may have applications in gene therapy.  相似文献   

8.
To understand constraints on the evolution of bacteriophage assembly, the structures, electrophoretic mobilities (mu) and assembly pathways of the related double-stranded DNA bacteriophages T7, T3 and phi II, have been compared. The characteristics of the following T7, T3 and phi II capsids in these assembly pathways have also been compared: (1) a DNA-free procapsid (capsid I) that packages DNA during assembly; (b) a DNA packaging-associated conversion product of capsid I (capsid II). The molecular weights of the T3 and phi II genomes were 25.2 X 10(6) and 25.9 (+/- 0.2) X 10(6) (26.44 X 10(6) for T7, as previously determined), as determined by agarose gel electrophoresis of intact genomes. The radii of T7, T3 and phi II bacteriophages were indistinguishable by sieving during agarose gel electrophoresis (+/- 4%) and measurement of the bacteriophage hydration (+/- 2%) (30.1 nm for T7, as previously determined). Assuming a T = 7 icosahedral lattice for the arrangement of the major capsid subunits (p10A) of T7, T3 and phi II best explains these data and data previously obtained for T7. At pH 7.4 and an ionic strength of 1.2, the solid-support-free mu values (mu 0 values) of T7, T3 and phi II bacteriophages, obtained by extrapolation of mu during agarose gel electrophoresis to an agarose concentration of 0 and correction for electro-osmosis, were -0.71, -0.91 and -1.17(X 10(-4) cm2V-1 s-1. The mu 0 values of T7, T3 and phi II capsids I were -1.51, -1.58 and -2.07(X 10(-4] cm2V-1 s-1. For the capsids II, these mu 0 values were -0.82, -1.07 and -1.37(X 10(-4] cm2V-1 s-1. The tails of all three bacteriophages were positively charged and the capsid envelopes (heads) were negatively charged. In all cases the procapsid had a negative mu 0 value larger in magnitude than the negative mu 0 value for bacteriophage or capsid II. A trypsin-sensitive region in capsid I-associated, but not capsid II-associated, T3 p10A was observed (previously observed for T7). The largest fragment of trypsinized capsid I-associated p10A had the same molecular weight in T7 and T3, although the T3 p10A is 18% more massive than the T7 p10A. It is suggested that the trypsin-resistant region of capsid I-associated p10A determines the radius of the bacteriophage capsid.  相似文献   

9.
Bacteriophage P22, like other double-stranded DNA bacteriophages, packages DNA in a preassembled, DNA-free procapsid. The P22 procapsid and P22 bacteriophage have been electrophoretically characterized; the procapsid has a negative average electrical surface charge density (sigma) higher in magnitude than the negative sigma of the mature bacteriophage. Dextrans, sucrose, and maltose were shown to have a dramatic stimulatory effect on the in vitro packaging of DNA by the P22 procapsid. However, sedoheptulose, smaller sugars, and smaller polyols did not stimulate in vitro P22 DNA packaging. These and other data suggest that an osmotic pressure difference across some particle, probably a capsid, stimulates P22 DNA packaging. After in vitro packaging was optimized by including dextran 40 in extracts, the entry kinetics of DNA into P22 capsids were measured. Packaged DNA was detected by: (i) DNA-specific staining of intact capsids after fractionation by agarose gel electrophoresis and (ii) agarose gel electrophoresis of DNase-resistant DNA after release of DNase-resistant DNA from capsids. It was found that the first DNA was packaged by 1.5 min after the start of incubation. The data further suggest that either P22 capsids with DNA partially packaged in vitro are too unstable to be detected by the above procedures or entry of DNA into the capsid occurs in less than 0.25 min.  相似文献   

10.
Sesbania mosaic virus (SeMV) capsids are stabilized by protein-protein, protein-RNA and calcium-mediated protein-protein interactions. The N-terminal random domain of SeMV coat protein (CP) controls RNA encapsidation and size of the capsids and has two important motifs, the arginine-rich motif (ARM) and the beta-annulus structure. Here, mutational analysis of the arginine residues present in the ARM to glutamic acid was carried out. Mutation of all the arginine residues in the ARM almost completely abolished RNA encapsidation, although the assembly of T=3 capsids was not affected. A minimum of three arginine residues was found to be essential for RNA encapsidation. The mutant capsids devoid of RNA were less stable to thermal denaturation when compared to wild-type capsids. The results suggest that capsid assembly is entirely mediated by CP-dependent protein-protein inter-subunit interactions and encapsidation of genomic RNA enhances the stability of the capsids. Because of the unique structural ordering of beta-annulus segment at the icosahedral 3-folds, it has been suggested as the switch that determines the pentameric and hexameric clustering of CP subunits essential for T=3 capsid assembly. Surprisingly, mutation of a conserved proline within the segment that forms the beta-annulus to alanine, or deletion of residues 48-53 involved in hydrogen bonding interactions with residues 54-58 of the 3-fold related subunit or deletion of all the residues (48-59) involved in the formation of beta-annulus did not affect capsid assembly. These results suggest that the switch for assembly into T=3 capsids is not the beta-annulus. The ordered beta-annulus observed in the structures of many viruses could be a consequence of assembly to optimize intersubunit interactions.  相似文献   

11.
The information required for successful assembly of an icosahedral virus is encoded in the native conformation of the capsid protein and in its interaction with the nucleic acid. Here we investigated how the packing and stability of virus capsids are sensitive to single amino acid substitutions in the coat protein. Tryptophan fluorescence, bis-8-anilinonaphthalene-1-sulfonate fluorescence, CD and light scattering were employed to measure urea- and pressure-induced effects on MS2 bacteriophage and temperature sensitive mutants. M88V and T45S particles were less stable than the wild-type forms and completely dissociated at 3.0 kbar of pressure. M88V and T45S mutants also had lower stability in the presence of urea. We propose that the lower stability of M88V particles is related to an increase in the cavity of the hydrophobic core. Bis-8-anilinonaphthalene-1-sulfonate fluorescence increased for the pressure-dissociated mutants but not for the urea-denatured samples, indicating that the final products were different. To verify reassembly of the particles, gel filtration chromatography and infectivity assays were performed. The phage titer was reduced dramatically when particles were treated with a high concentration of urea. In contrast, the phage titer recovered after high-pressure treatment. Thus, after pressure-induced dissociation of the virus, information for correct reassembly was preserved. In contrast to M88V and T45S, the D11N mutant virus particle was more stable than the wild-type virus, in spite of it also possessing a temperature sensitive growth phenotype. Overall, our data show how point substitutions in the capsid protein, which affect either the packing or the interaction at the protein-RNA interface, result in changes in virus stability.  相似文献   

12.
Single-stranded RNA (ssRNA) viruses, which include major human pathogens, package their genomes as they assemble their capsids. We show here that the organization of the viral genomes within the capsids provides intriguing insights into the highly cooperative nature of the assembly process. A recent cryo-electron microscopy structure of bacteriophage MS2, determined with only 5-fold symmetry averaging, has revealed the asymmetric distribution of its encapsidated genome. Here we show that this RNA distribution is consistent with an assembly mechanism that follows two simple rules derived from experiment: (1) the binding of the MS2 maturation protein to the RNA constrains its conformation into a loop, and (2) the capsid must be built in an energetically favorable way. These results provide a new level of insight into the factors that drive efficient assembly of ssRNA viruses in vivo.  相似文献   

13.
Toroidal winding of double-stranded DNA in the protein capsids of bacteriophages has been proposed previously. An alternative model for the packaging and arrangement of DNA in bacteriophage capsids is presented here. By introducing sharp folds, the alternative model avoids toroidal winding and its accompanying difficulties. This alternative model is in agreement with the current data obtained with several different bacteriophages.  相似文献   

14.
Based on atomic force microscopy nanoindentation measurements of phage λ, we previously proposed a minimal model describing the effect of water hydrating DNA that strengthens viral capsids against external deformation at wild-type DNA packing density. Here, we report proof of this model by testing the prediction that DNA hydration forces can be dramatically decreased by addition of multivalent ions (Mg2+ and Sp4+). These results are explained using a DNA hydration model without adjustable parameters. The model also predicts the stiffness of other DNA-filled capsids, which we confirm using bacteriophage ?29 and herpes simplex virus type 1 particles.  相似文献   

15.
Observation that DNA molecules in bacteriophage capsids preferentially form torus type of knots provided a sensitive gauge to evaluate various models of DNA arrangement in phage heads. Only models resulting in a preponderance of torus knots could be considered as close to reality. Recent studies revealed that experimentally observed enrichment of torus knots can be qualitatively reproduced in numerical simulations that include a potential inducing nematic arrangement of tightly packed DNA molecules within phage capsids. Here, we investigate what aspects of the nematic arrangement are crucial for inducing formation of torus knots. Our results indicate that the effective stiffening of DNA by the nematic arrangement not only promotes knotting in general but is also the decisive factor in promoting formation of DNA torus knots in phage capsids.  相似文献   

16.
Using cryo-electron microscopy, single particle image processing and three-dimensional reconstruction with icosahedral averaging, we have determined the three-dimensional solution structure of bacteriophage MS2 capsids reassembled from recombinant protein in the presence of short oligonucleotides. We have also significantly extended the resolution of the previously reported structure of the wild-type MS2 virion. The structures of recombinant MS2 capsids reveal clear density for bound RNA beneath the coat protein binding sites on the inner surface of the T = 3 MS2 capsid, and show that a short extension of the minimal assembly initiation sequence that promotes an increase in the efficiency of assembly, interacts with the protein capsid forming a network of bound RNA. The structure of the wild-type MS2 virion at ∼9 Å resolution reveals icosahedrally ordered density encompassing ∼90% of the single-stranded RNA genome. The genome in the wild-type virion is arranged as two concentric shells of density, connected along the 5-fold symmetry axes of the particle. This novel RNA fold provides new constraints for models of viral assembly.  相似文献   

17.
Recent studies suggest that some RNA-binding proteins facilitate the folding of non-cognate RNAs. Here, we report that bacteriophage MS2 coat protein (MS2 CP) bound and promoted the catalytic activity of Candida group I ribozyme. Cloning of the MS2-bound RNA segments showed that this protein primarily interacts with the P5ab-P5 structure. Ultraviolet cross-linking and the T1 footprinting assay further showed that MS2 binding stabilized tertiary interactions, including the conserved L9-P5 interaction, and led to a more compact core structure. This mechanism is similar to that of the yeast mitochondrial tyrosyl-tRNA synthetase on other group I introns, suggesting that different RNA-binding proteins may use common mechanisms to support RNA structures.  相似文献   

18.
Several techniques were examined for the solubilization of bacteriophage MS2 in organic solvents. Direct extraction of the MS2 from an aqueous phase into isooctane containing 2 mM AOT, a proven approach for the organic solubilization of many proteins, was not successful. However, predried samples of MS2 were solubilized through the direct addition of organic solvents containing 500 mM AOT. As an alternative procedure, reverse micelles containing aqueous solutions of MS2 were prepared in isooctane using AOT, dehydrated through solvent evaporation and azeotropic drying, and resolubilized in a solvent of choice. The structure and microenvironment of organic-solubilized MS2 were investigated by UV absorbance, the fluorescence emission of an attached solvatochromatic dye, tryptophan fluorescence, and atomic force microscopy, all of which contributed evidence for a fully assembled capsid in the organic solvent. The solubilized MS2 was derivatized with stearic acid in chloroform, illustrating that bioconjugation reactions can be performed on organic-solubilized capsids using reagents that are completely insoluble in water. Furthermore, the organic-solubilized phage remained infectious after heating at 90 degrees C for 20 min, whereas phage in aqueous buffer or dried with nitrogen were nonviable following the heat treatment protocol. The extended range of available chemical modifications and the enhanced thermal stability of the organic-solubilized capsids bodes well for the formulation of storage-stable vaccines predicated on reactions in or exposure to organic media.  相似文献   

19.
mRNA vaccines are potentially attractive alternatives to DNA vaccines more often discussed, as they are generally considered safer than their DNA counterparts. The major limitations on the potency of RNA vaccines are their instability and inability to spread in vivo. Virus-like particles (VLPs) based on the bacteriophage MS2 have demonstrated remarkably high stability and may provide an improved platform for RNA-based genetic vaccination. However, no in vivo study of an MS2 VLP-mediated RNA vaccine has been reported. Therefore, we developed a model vaccine wherein MS2 VLPs packaging HIV-1 gag mRNAs (1544 bases) were produced in Saccharomyces cerevisiae, and then, used to immunize BALB/c mice. Serological analyses showed that antigen-specific antibody responses were elicited by immunization. These findings suggest that MS2 VLPs can be used in the design and construction of novel and safe phage-based mRNA delivery vectors.  相似文献   

20.
Assembly of virus capsids and surface proteins must be regulated to ensure that the resulting complex is an infectious virion. In this review, we examine assembly of virus capsids, focusing on hepatitis B virus and bacteriophage MS2, and formation of glycoproteins in the alphaviruses. These systems are structurally and biochemically well-characterized and are simplest-case paradigms of self-assembly. Published data suggest that capsid and glycoprotein assembly is subject to allosteric regulation, that is regulation at the level of conformational change. The hypothesis that allostery is a common theme in viruses suggests that deregulation of capsid and glycoprotein assembly by small molecule effectors will be an attractive antiviral strategy, as has been demonstrated with hepatitis B virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号