首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11T, was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA–DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098T. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11T (=CGMCC 4.7304T=DSM 101531T).  相似文献   

2.
Aromatic polyketides are important therapeutic compounds which include front line antibiotics and anticancer drugs. Since most of the aromatic polyketides are known to be produced by soil dwelling Streptomyces, 54 Streptomyces strains were isolated from the soil samples. Five isolates, R1, B1, R3, R5 and Y8 were found to be potent aromatic polyketide producers and were identified by 16S rRNA gene sequencing as Streptomyces spectabilis, Streptomyces olivaceus, Streptomyces purpurascens, Streptomyces coeruleorubidus and Streptomyces lavendofoliae respectively. Their sequences have been deposited in the GenBank under the accession numbers KF468818, KF681280, KF395224, KF527511 and KF681281 respectively. The Streptomyces strains were cultivated in the media following critically optimised culture conditions. The resulting broth extracts were fractionated on a silica gel column and preparative TLC to obtain pure compounds. The pure compounds were tested for bioactivity and the most potent compound from each isolate was identified by UV–Vis, IR and NMR spectroscopic methods. Isolated S. spectabilis (R1), yielded one potent compound identified as dihydrodaunomycin with an MIC of 4 µg/ml against Bacillus cereus and an IC50 value of 24 µM against HeLa. S. olivaceus (B1), yielded a comparatively less potent compound, elloramycin. S. purpurascens (R3) yielded three compounds, rhodomycin, epelmycin and obelmycin. The most potent compound was rhodomycin with an MIC of 2 µg/ml against B. cereus and IC50 of 15 µM against HeLa. S. coeruleorubidus (R5), yielded daunomycin showing an IC50 of 10 µM and also exhibiting antimetastatic properties against HeLa. S. lavendofoliae (Y8), yielded a novel aclacinomycin analogue with IC50 value of 2.9 µM and potent antimetastatic properties at 1 µM concentration against HeLa. The study focuses on the characterization of aromatic polyketides from soil Streptomyces spp., which can serve as potential candidates for development of chemotherapeutic drugs in future.  相似文献   

3.
Two novel Gram-stain positive, spore-forming, aerobic actinomycetes, designated NEAU-PCY-1T and NEAU-PCY-2, were isolated from rhizosphere soil of Urtica urens L. collected from Anshan, Liaoning Province, northeast China. The 16S rRNA gene sequence analysis showed that strains NEAU-PCY-1T and NEAU-PCY-2 exhibited 99.8% similarity with each other and are closely related to Streptomyces abietis DSM 42080T (98.2, 98.3%) and Streptomyces fildesensis DSM 41987T (98.0, 98.1%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the two strains formed a cluster with these two closely related species. Moreover, DNA–DNA hybridization results and some phenotypic, physiological and biochemical properties differentiated the two strains from their close relatives in the genus Streptomyces. Based on a polyphasic taxonomy study, strains NEAU-PCY-1T and NEAU-PCY-2 are considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces urticae sp. nov. is proposed, with NEAU-PCY-1T (=?DSM 105115T?=?CCTCC AA 2017015T) as the type strain.  相似文献   

4.
Dodonaea viscosa, a wild and perennial shrub that can tolerate harsh environmental conditions, was used for the isolation of its endophytic bacteria and their potential was explored for the promotion of Canola growth. The bacteria identified through 16S rRNA gene sequencing, belonged to ten different genera namely Inquilinus, Xanthomonas, Pseudomonas, Rhizobium, Brevundimonas, Microbacterium, Bacillus, Streptomyces, Agrococcus and Stenotrophomonas. All the strains produced small amount of IAA (indole acetic acid) in the absence of tryptophan and comparatively more in the presence of tryptophan. All the bacterial strains were positive for ammonia production, cellulase and pectinase activity, but few of them showed phosphate solubilization, siderophore and hydrogen cyanide production. Only three strains showed ACC (1-aminocyclopropane-1-carboxylate) deaminase activity when tested using in-vitro enzyme assay. Members of genera Bacillus, Pseudomonas and Streptomyces showed positive chitinase, protease and antifungal activity against two phytopathogenic fungi Aspergillus niger and Fusarium oxysoprum, while members of Xanthomonas, Pseudomonas and Bacillus showed significant root elongation of Canola which could be related with their positive plant-growth-promoting (PGP) traits. Among the three plant growth promoting Bacillus strains, B. idriensis is never reported before for its PGP activities. These results showed the potential of Dodonaea viscosa endophytic bacteria as PGPBs, which in future can be further explored for their host range/molecular mechanisms.  相似文献   

5.
A novel actinomycete, designated strain NEAU-LA29T, was isolated from soil collected from Xianglu Mountain and subjected to a polyphasic taxonomic study. Based on a polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological and physiological characterisation, the isolate has been affiliated to the genus Streptomyces. 16S rRNA gene sequence analysis showed that the isolate is closely related to Streptomyces vastus JCM4524T (98.8% identity) and Streptomyces cinereus DSM43033T (97.9%). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and low DNA–DNA relatedness values enabled the strain to be differentiated from these closely related species of the genus Streptomyces. Thus, strain NEAU-LA29T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces xiangluensis sp. nov. is proposed. The type strain is NEAU-LA29T (=?CGMCC 4.7466T?=?DSM 105786T).  相似文献   

6.
A novel Gram-stain positive, spore-forming, aerobic actinomycete, designated strain NEAU-QTH3-11T, was isolated from muddy soil collected from a stream in Qitaihe, Heilongjiang Province, northeast China and characterised using a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain NEAU-QTH3-11T belongs to the genus Streptomyces and is closely related to Streptomyces rhizosphaerihabitans NBRC 109807T (99.38%) and Streptomyces mirabilis JCM 4791T (99.03%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain formed a cluster with S. rhizosphaerihabitans NBRC 109807T and Streptomyces siamensis NBRC 108799T (98.62%). The menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15:0, iso-C16:0, C16:0 and C15:0. However, multilocus sequence analysis based on five house-keeping genes (atpD, gyrB, rpoB, recA and trpB), low DNA-DNA hybridization results and some phenotypic, physiological and biochemical properties could differentiate the strain from its close relatives in the genus Streptomyces. Therefore, strain NEAU-QTH3-11T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces lutosisoli sp. nov. is proposed, with NEAU-QTH3-11T (=DSM 42165T=CGMCC 4.7198T) as the type strain.  相似文献   

7.
Streptomyces is a genus known for its ability to protect plants against many pathogens and various strains of this bacteria have been used as biological control agents. In this study, the efficacy of Streptomyces philanthi RM-1-138, S. philanthi RL-1-178, and Streptomyce mycarofaciens SS-2-243 to control various strains of Botrytis cinerea was evaluated both in vitro and in vivo. In vitro studies using confrontation tests on PDA plates indicated that the three strains of Streptomyces spp. inhibited the growth of 41 strains of B. cinerea. Volatile compounds produced by Streptomyces spp. had an influence on the growth of ten strains of B. cinerea while its culture filtrate at low concentration (diluted at 10?3) showed a complete inhibition (100%) of spore germination of B. cinerea strain BC1. A significant protection efficacy of tomato against B. cinerea was observed on both whole plant test (57.4%) and detached leaf test (60.1%) with S. philanti RM-1-138. Moreover, this antagonistic strain had a preventive and a curative effect. These results indicated that S. philanthi RM-1-138 may have the potential to control gray mold caused by B. cinerea on tomato but further work is required to enhance its efficacy and its survival in planta.  相似文献   

8.
Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (>?98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.  相似文献   

9.
A novel actinomycete strain, designated TRM 49605T, was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605T to the genus Streptomyces. Strain TRM 49605T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815T (98.62 %), Streptomyces flavovariabilis NRRL B-16367T (98.45 %) and Streptomyces variegatus NRRL B-16380T (98.45 %). Whole cell hydrolysates of strain TRM 49605T were found to contain ll-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605T were identified as iso C16:0, anteiso C15:0, C16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA–DNA relatedness between strain TRM 49605T and the phylogenetically related strain S. roseolilacinus NBRC 12815T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605T (=CCTCC AA2015026T = KCTC 39666T) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.  相似文献   

10.
A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species–P. kongii, P. olsonii, and P. viticola–have not been previously recorded in Korea.  相似文献   

11.
A novel actinomycete strain designated S2T was isolated from Tunisian rhizosphere soil of Lavandula officinalis. This isolate exhibited broad spectrum antibacterial activity against several Gram-positive and Gram-negative bacteria and also antifungal activity against yeast and filamentous fungi. The isolate S2T presents morphological and chemotaxonomic characteristics typical of the members of the genus Streptomyces. Whole cell hydrolysates of S2T were found to contain LL-diaminopimelic acid. The major fatty acids were identified as C16:0, anteiso-C15:0 and iso-C16:0 whereas the predominant menaquinones were found to be MK-9(H6) and MK-9(H8). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and three unidentified compounds. The G+C content of the genomic DNA was determined to be 71.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2T belongs to the genus Streptomyces and is closely related to Streptomyces netropsis DSM 40259T with 99.86% sequence similarity. Multi-locus sequence analysis (MLSA) based on four house-keeping gene alleles (gyrB, recA, trpB, rpoB) showed that isolate S2T is closely related to S. netropsis, with an MLSA distance greater than 0.007. The DNA–DNA relatedness between strain S2T and its near phylogenetic neighbour was 63.6 ± 2.3%, which is lower than the 70% threshold value for delineation of genomic prokaryotic species. This isolate was also distinguished from the type strain S. netropsis DSM 40259T, using a combination of morphological and physiological features. Based on its phenotypic and molecular properties, strain S2T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces tunisialbus sp. nov. is proposed. The type strain is S2T (= JCM 32165T = DSM 105760T).  相似文献   

12.

Objective

To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces.

Results

A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h.

Conclusion

The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.
  相似文献   

13.
Coral reefs are one of the most dynamic and productive marine ecosystems. The coral holobiont consists of the coral animal and a variety of associated microorganisms that include symbiotic dinoflagellates of the genus Symbiodinium, bacteria, archaea, fungi and viruses. The interactions among these components are crucial for coral health and, consequently, to the coral reef resilience to disturbance. Environmental stressors such as elevated temperature, high irradiance and ultraviolet (UV) radiation can lead to the breakdown of the coral-Symbiodinium symbiosis in a phenomenon known as “coral bleaching”. The present study provides evidence for virus-like particles (VLPs) induced in UV-irradiated Symbiodinium spp. cultures (clades A and C) that were isolated from the coral Mussismilia braziliensis, suggesting a latent viral infection in these strains. Scanning and transmission electron microscopy images of the UV stressed cultures revealed the presence of giant (ca. 450 nm) and small (ca. 40 nm) VLPs. Morphological features link the giant VLPs to the family Megaviridae. Symbiodinium spp. Megaviridae giant viruses and other associated viruses may represent dynamic forces driving and influencing health of the coral holobiont.  相似文献   

14.
The Streptomyces spp. are notorious plant biomass decomposers in soil environments, but only few strains were biochemically and genetically characterized. Here, we employed functional screening along with genomic sequencing for identification of novel lignocellulolytic Streptomyces strains. Streptomyces strains isolated from soil were functional screened based on their cellulolytic and hemicellulolytic capacities by enzymatic plate assays containing carboxymethylcellulose (CMC) and beechwood xylan as sole carbon source. Subsequently, genomes of Streptomyces strains were sequenced, annotated, and interpreted to correlate their genetic contents with biochemical properties. Among the 80 bacterial isolates that were screened for enzymatic activity, two Streptomyces strains (named as F1 and F7) exhiting higher endoglucanase and endoxylanase activities were selected for biochemical and genomic characterization. After cultivation on steam-pretreated sugarcane bagasse-based medium, the supernatant of the strains F1 and F7 exhibited enzymatic activity against different substrates, such as arabinan, rye arabinoxylan, β-glucan, starch, CMC, xylan, and chitin. Furthermore, strain F7 was able to degrade pectin, mannan, and lichenan. The genomic analysis of both strains revealed a diversity of carbohydrate-active enzymes. The F1 and F7 genomes encode 33 and 44 different types of glycosyl hydrolases families, respectively. Moreover, the genomic analysis also identified genes related to degradation of lignin-derived aromatic compounds. Collectively, the study revealed two novel Streptomyces strains and further insights on the degradation capability of lignocellulolytic bacteria, from which a number of technologies can arise, such as saccharification processes.  相似文献   

15.
Multiple actinomycete strains were isolated from two ant species, Lasius niger and Formica cunicularia, and their phenotypic properties and phylogenetic position were studied. Partial sequencing of 16S rRNA assigned the greater part of them to the genus Streptomyces, but only one belonged to Nocardia. However, some isolates had significant color and morphological differences from their closest phylogenetic relatives. The abundance and biodiversity of actinomycete communities isolated from L. niger ants greatly exceeded those found for F. cunicularia. All of the actinomycetes associated with F. cunicularia ants demonstrated cellulolytic activity, but only one had such ability among the strains associated with black ants.  相似文献   

16.
17.
The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.  相似文献   

18.
The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62 % of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD.  相似文献   

19.
A novel actinobacterium, strain SK68, was isolated from the rhizosphere of peanut plant and its salinity stress alleviation ability was studied using tomato (Solanum lycopersicum cv. Micro-Tom) plants. Based on 16S rDNA based phylogenetic analysis, strain SK68 has been identified as a Streptomyces sp. Strain SK68 had branched substrate mycelium bearing smooth surfaced spores and the spore colour is brownish grey on ISP4 medium. It exhibited enzyme activities such as xylanase, cellulase, amylase, and pectinase and degraded hypoxanthine, casein, and L-tyrosine. The strain SK68 differed in its banding pattern in BOX-PCR and RAPD fingerprinting compared to the closely matching type strains Streptomyces erythrochromogenes NBRC 3304T (AB184746), S. flavotricini NBRC 12770T (AB184132), S. racemochromogenes NBRC 12906T (AB184235), and S. polychromogenes NBRC 13072T (NR041109). Strain SK68 was evaluated for its salinity stress-alleviating activity in tomato plants with 180 mmol/L NaCl under gnotobiotic condition. A significant increase in plant biomass was observed in strain SK68-inoculated tomato plants under salt stress compared to control and salt-stressed non-inoculated plants.  相似文献   

20.
A novel endophytic actinomycete strain, designated KM-1-2T, was isolated from seeds of Ginkgo biloba at Yangling, China. A polyphasic approach was used to study the taxonomy of strain KM-1-2T and it was found to show a range of phylogenetic and chemotaxonomic properties consistent with those of members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was identified as LL-diaminopimelic acid. No diagnostic sugars were detected in whole cell hydrolysates. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The diagnostic phospholipids were found to be phosphatidylethanolamine and phosphatidylcholine. The DNA G + C content of the novel strain was determined to be 72.9 mol%. The predominant cellular fatty acids (> 10.0?%) were identified as iso-C14?:?0, iso-C16?:?0, C16?:?0 and C17?:?0 cyclo. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is closely related to Streptomyces carpaticus JCM 6915T (99.3%), Streptomyces harbinensis DSM 42076T (98.9%) and Streptomyces cheonanensis JCM 14549T (98.5%). DNA-DNA hybridizations with these three close relatives gave similarity values of 39.1 ± 1.9, 35.8 ± 2.3, and 47.4 ± 2.7%, respectively, which indicated that strain KM-1-2T represents a novel species of the genus Streptomyces. This is consistent with the morphological, physiological and chemotaxonomic data. Cumulatively, these data suggest that strain KM-1-2T represents a novel Streptomyces species, for which the name Streptomyces ginkgonis sp. nov. is proposed, with the type strain KM-1-2T (= CCTCC AA2016004T = KCTC 39801T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号