首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reed canarygrass, Phalaris arundinacea L., produces high biomass yields in cool climates and wetlands. The number and timing of harvests during a growing season directly affect biomass yield and biofuel quality. In order to determine optimum harvest management, seven cultivars of reed canarygrass were planted in field experiments at Ames, IA; McNay, IA; and Arlington, WI in the upper Midwestern USA and harvested once in autumn or in winter, twice in spring + autumn or spring + winter, or three times during the season as hay. Biomass yield varied considerably among harvest treatments, locations, and years, ranging up to 12.6 Mg ha?1. Dry matter percentage ranged from 37% for spring-harvested biomass to 84% for overwintered biomass. The three harvest hay and two harvest spring + autumn managements produced the highest biomass yield compared to other systems, but the advantage, if any, of hay management was small and probably does not justify the cost of additional fieldwork. More mature biomass, such as that found in the single harvest systems, had higher fiber concentrations. Overwintered biomass had superior biofuel quality, being low in P, K, S, and Cl and high in cell wall concentration. However, winter harvest systems had lower yield than autumn harvest and in some years, no harvest was possible due to lodging from snow compaction. The main limitation of a two harvest system is the high moisture content of the late spring/early summer biomass.  相似文献   

2.
Switchgrass (Panicum virgatum L.) is well suited to marginal croplands, but is difficult to manage sustainably both for maximum yield and optimal biomass composition. Quality can be improved by overwintering switchgrass in the field, but more information is needed on amount and consistency of yield recovery in spring. Two cultivars of switchgrass were sown on separate fields in Freeville, NY, and mowed and baled in late fall (FALL), mowed in fall and baled in spring (WINTER), or mowed and baled in spring (SPRING), using conventional field harvesting equipment. Samples were collected for analysis of plant morphological components and for determining the influence of harvest stubble height on yield and composition. Recovery of FALL biomass yields the following spring ranged from 52 to 82% and was related to both total winter snowfall and to the spring date when soil was dry enough to allow equipment traffic. Approximately 1% of dry matter yield was left in the field for each centimeter of stubble height following mowing. Bale moisture content was very low in spring, averaging 7.3%, but was much more variable and higher in the fall, averaging 22% for “Cave-in-Rock”. Inflorescence and leaf blade were the primary morphological components lost in standing switchgrass over winter. The SPRING treatment can be mowed and baled on the same day without other field operations and has higher quality than WINTER, with no consistent yield advantage for either spring baling treatment. The large and variable yield loss due to overwintering switchgrass in the field makes the practice questionable.  相似文献   

3.
Switchgrass (Panicum virgatum L.) is currently undergoing intensive breeding efforts to improve biomass yield. Consideration must be made regarding the relative importance of spaced plantings to sward plots for evaluation and selection for increased biomass yield. It has previously been suggested that selection schemes using secondary plant morphological traits as selection criteria within spaced plantings may be an efficient method of making genetic gain. The objective of this study was to empirically test the effects of direct selection for plant height, tiller count, flowering date, and visual selection for biomass yield within spaced plantings on biomass yield and morphology traits within sward plots. Divergently selected populations for each trait were developed from the WS4U upland tetraploid germplasm and evaluated for biomass yield at five locations in Wisconsin during two growing seasons. Significant variation was observed between maternal parents of the selected populations for both selected and nonselected traits. Despite substantial differences between parent plant populations for plant morphology, significant differences were not observed for sward-plot biomass yield or sward-plot morphology relative to the base population. Late flowering selections yielded 2.0 Mg/ha greater biomass than early flowering selections (29 % increase). Plant height within sward plots was observed to have a strong positive correlation with biomass yield. Tiller count was observed to have a weak correlation with biomass yield. Based on the observed results, it is recommended that greater emphasis be placed on evaluation of biomass yield using sward plots.  相似文献   

4.
Development of switchgrass (Panicum virgatum L.) as a dedicated biomass crop for conversion to energy requires substantial increases in biomass yield. Most efforts to breed for increased biomass yield are based on some form of indirect selection. The objective of this paper is to evaluate and compare the expected efficiency of several indirect measures of breeding value for improving sward-plot biomass yield of switchgrass. Sward-plot biomass yield, row-plot biomass, and spaced-plant biomass were measured on 144 half-sib families or their maternal parents from the WS4U-C2 breeding population of upland switchgrass. Heading date was also scored on row plots and anthesis date was scored on spaced plants. Use of any of these indirect selection criteria was expected to be less efficient than direct selection for biomass yield measured on sward plots, when expressed as genetic gain per year. Combining any of these indirect selection criteria with half-sib family selection for biomass yield resulted in increases in efficiency of 14 to 36%, but this could only be achieved at a very large cost of measuring phenotype on literally thousands of plants that would eventually have no chance of being selected because they were derived from inferior families. Genomic prediction methods offered the best solution to increase breeding efficiency by reducing average cycle time, increasing selection intensity, and placing selection pressure on all additive genetic variance within the population. Use of genomic selection methods is expected to double or triple genetic gains over field-based half-sib family selection.  相似文献   

5.
Switchgrass, Panicum virgatum L., grown for biomass has been extensively researched where the annual precipitation >760 mm and the climate varies from humid to moist-subhumid. Research is needed for areas that receive <700 mm of precipitation, where the climate varies from dry-subhumid to semiarid. The objectives were to determine (1) the effect of nitrogen fertilization on biomass production, (2) the effect of residual nitrogen on biomass production, (3) the nitrogen yield from harvested biomass, and (4) the concentration of soil organic carbon (SOC) from switchgrass plots. Plots were fertilized annually with nitrogen at the rates of 0, 40, 80, and 120 kg ha?1 from 2008 to 2011 and unfertilized from 2012 to 2015. The biomass yield varied with N rate × production year interactions (P < 0.05), and biomass yield as a function of N rate was either linear or curvilinear depending upon production year. When fertilized, the biomass yield averaged 4.4, 9.4, 11.6, and 13.2 ± 0.4 Mg ha?1 for the 0, 40, 80, and 120 kg ha?1 N rates, respectively. Residual nitrogen sustained high biomass yields for 1 year after fertilization ceased. The nitrogen harvested in biomass varied with N rate × production year interactions (P < 0.05), and the harvested nitrogen yield as a function of N rate was linear each year. Fertilization increased the concentration of SOC an average of 1.0 ± 0.2 mg g?1 of soil. The data suggest that producers could occasionally skip a year of nitrogen fertilization without detrimentally impacting the production of switchgrass biomass.  相似文献   

6.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

7.
Switchgrass (Panicum virgatum L.) is being developed into a perennial, herbaceous, cellulosic feedstock crop for use in temperate regions of the USA. Information on spatial and temporal variation for stands and biomass yield among and within fields in large agroecoregions is not available. Spatial and temporal variation information is needed to model feedstock availability for biorefineries. In this 5-yr study, the spatial and temporal variation for biomass yield and stands was determined among and within 10 fields located in North Dakota, South Dakota, and Nebraska. Switchgrass fields were managed for bioenergy from 2000 to 2004 for the Nebraska locations and 2001 to 2005 for the South Dakota and North Dakota locations. A global positioning system (GPS) receiver was used to repeatedly measure within field quadrat sites for switchgrass stands using frequency grid (2.25 m2) measurements in June for five growing seasons. Sixteen quadrat (≥1 m2) yield samples were taken post-killing frost in the establishment year and in August in subsequent years at each location. Topographic within field effects on switchgrass stand frequency and biomass yields were largely insignificant. Stands tended to increase from establishment year to year 3 and then begin to plateau. Weather factors, which were the principal source of temporal variation, were more important in switchgrass yield variation than on switchgrass stand frequencies. Temporal standard deviations for yield were higher on quadrat sites with higher than average field means while temporal standard deviations were smaller in quadrat sites that had lower than average field means at six locations. In the Northern Great Plains agroecoregion, there is greater temporal and spatial variation for switchgrass biomass yields among fields than within fields. Results indicate that modeling feedstock availability for a biorefinery can be based on field scale yields.  相似文献   

8.
Although upgrading bio-oil from fast pyrolysis of biomass is an attractive pathway for biofuel production, nitrogen (N) and mineral matter carried over from the feedstock to the bio-oil represents a serious contaminant in the process. Reducing the N and ash content of biomass feedstocks would improve process reliability and reduce production costs of pyrolytic biofuels. This study investigated: (1) How does switchgrass harvest date influence the yield, N concentration ([N]), and ash concentration of biomass and fast pyrolysis products? and (2) Is there a predictive relationship between [N] of switchgrass biomass and [N] of fast pyrolysis products? Switchgrass from five harvest dates and varying [N] from central Iowa were pyrolyzed using a free-fall reactor. Harvestable biomass peaked in August (8.6 Mg ha?1), dropping significantly by November (6.7 Mg ha?1, P?=?0.0027). Production of bio-oil per unit area mirrored that of harvested biomass at each harvest date; however, bio-oil yield per unit dry biomass increased from 46.6 % to 56.7 % during the season (P?=?0.0018). Allowing switchgrass to senesce lowered biomass [N] dramatically, by as much as 68 % from June to November (P?<?0.0001). Concurrently, bio-oil [N] declined from 0.51 % in June to 0.17 % by November (P?<?0.0001). Significant reductions in ash concentration were also observed in biomass and char. Finally, we show for the first time that the [N] of switchgrass biomass is a strong predictor of the [N] of bio-oil, char, and non-condensable gas with R 2 values of 0.89, 0.94, and 0.88, respectively.  相似文献   

9.
Understanding the response of ecosystem respiration (ER) to major environmental drivers is critical for estimating carbon sequestration and large-scale modeling research. Temperature effect on ER is modified by other environmental factors, mainly soil moisture, and such information is lacking for switchgrass (Panicum virgatum L.) ecosystems. The objective of this study was to examine seasonal variation in ER and its relationship with soil temperature (T s) and moisture in a switchgrass field. ER from the nighttime net ecosystem CO2 exchange measurements by eddy covariance system during the 2011 and 2012 growing seasons was analyzed. Nighttime ER ranged from about 2 (early growing season) to as high as 13 μmol m?2 s?1 (peak growing period) and showed a clear seasonality, with low rates during warm (>30 °C) and dry periods (<0.20 m3 m?3 of soil water content). No single temperature or moisture function described variability in ER on the seasonal scale. However, an exponential temperature–respiration function explained over 50 % of seasonal variation in ER at adequate soil moisture (>0.20 m3 m?3), indicating that soil moisture <0.20 m3 m?3 started to limit ER. Due to the limitation of soil–atmosphere gas exchange, ER rates declined markedly in wet soil conditions (>0.35 m3 m?3) as well. Consequently, both dry and wet conditions lowered temperature sensitivity of respiration (Q 10). Stronger ER–T s relationships were observed at higher soil moisture levels. These results demonstrate that soil moisture greatly influences the dynamics of ER and its relationship with T s in drought prone switchgrass ecosystems.  相似文献   

10.
High yielding, native warm-season grasses could be used as renewable bioenergy feedstocks. The objectives of this study were to determine the effect of warm season grass monocultures and mixtures on yield and chemical characteristics of harvested biomass and to evaluate the effect of initial seeding mixture on botanical composition over time. Switchgrass (Panicum virgatum L.), indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) were planted as monocultures and in all possible two- and three-way mixtures at three USA locations (Brookings and Pierre, SD and Morris, MN) during May 2002. Biomass at each location was harvested after a killing frost once annually from 2003 to 2005. Total biomass yield significantly increased with year at all locations. Switchgrass monocultures or mixtures containing switchgrass generally out-yielded big bluestem or indiangrass in monocultures or the binary mixture. Cellulose and hemicellulose concentrations were higher in 2004 and 2005 compared with 2003. Switchgrass or mixtures containing switchgrass tended to have less cellulose than either big bluestem or indiangrass. Results were more variable for total N, lignin, and ash. Switchgrass was the dominant component of all mixtures in which it was present while big bluestem was dominant when mixed with indiangrass. Indiangrass was maintained only in monocultures and declined over years when grown in mixtures at all locations. Our results indicated if biomass yield in the northern Great Plains is a primary objective, switchgrass should be a component of binary or tertiary mixtures that also contain big bluestem and/or indiangrass.  相似文献   

11.
It is important to understand switchgrass (Panicum virgatum L.) productivity with relation to diverse nutrient deficiency conditions in order to optimize continuous biomass production in marginal lands. This study was conducted on a wasteland sandy soil (Aridosol) to assess biomass yield, nutrient uptake and nitrogen (N) recovery of switchgrass, and soil nitrate-N (NO3?-N) accumulation responses to N (120 kg N ha?1), phosphorus (P, 100 kg P2O5 ha?1), and potassium (K, 45 kg K2O ha?1) applications during 2015 and 2016 in Inner Mongolia, China. The experiment layout was a randomized complete block design with fertilizer mixture treatments of N, P, and K (NPK), P and K (PK), N and K (NK), N and P (NP), and a control with no fertilizer input (CK). Plant height and stem diameter remained unaffected by the different fertilizer treatments. Biomass yield with the NPK treatment in 2015 was 8.9 Mg ha?1 and in 2016 it was 7.3 Mg ha?1. In 2015, compared with the NPK treatment, a significant yield reduction of 33.7% was found with PK, 22.5% with NK, 28.1% with NP, and 40.5% with CK; however, in 2016, yield declined significantly only with CK compared to the rest of the fertilizer treatments, for which yields were statistically similar. Plant N content was reduced for the treatment PK (i.e. N omission); conversely, plant P and K content remained unaffected with P and K omission treatments. Plant nutrient uptake, particularly of N and K, was severely decreased by the nutrient omission treatments when averaged across 2 years. Apparent N recovery (ANR; quantity of N uptake per unit of N applied) was reduced for the NP and NK treatments, which led to an increase in soil NO3?-N accumulation in the top 0–20 cm layer, compared with the NPK treatment. However, ANR was the highest (37.2% in 2015) with the NPK treatment, which also reduced soil NO3?-N accumulation. A balanced N, P, and K fertilizer management approach is suggested to sustain switchgrass yield and stand persistence on semiarid, marginal, sandy wasteland.  相似文献   

12.
Samples of freshly harvested and remoistened corn, of various moisture contents, were stored at different temperatures; analyses for aflatoxin content were made periodically. At moisture levels above 17.5% and at temperatures of 24 C or warmer, aflatoxins were formed by Aspergillus flavus present in the original epiphytic mycoflora. Remoistened dried corn was subject to more rapid fungal deterioration and aflatoxin formation than freshly harvested corn. Screening of the fungi present in the corn revealed aflatoxin production only by A. flavus. The toxigenic strains produced only aflatoxins B(1) and B(2).  相似文献   

13.
This study investigated the effects of pH, salinity, biomass concentration, and algal organic matter (AOM) on the efficiency of four commercial cationic flocculants. The tannin-based biopolymers Tanfloc SG and SL and the polyacrylamide polymers Flopam FO 4800 SH and FO 4990 SH were tested for flocculation of two microalgae models, the freshwater Chlorella vulgaris and the marine Nannochloropsis oculata. Both biomass concentration and AOM presence affected all polymers evaluated, whereas salinity and pH affected only Flopam and Tanfloc, respectively. A restabilization effect due to overdosing was only observed for Flopam polymers and increasing Tanfloc dose resulted in improved efficiency. Flopam polymers showed a significant decrease in the maximum quantum yield of photosystem II as function of polymer dose for Chlorella, which supported the need for toxicological studies to assess the potential toxicity of Flopam. In overall, Tanfloc was not affected by salinity nor presented potential toxicity therefore being recommended for the flocculation of both freshwater and marine species.  相似文献   

14.
Biomass synthesis from primary substrate is a principal featureof growth. A short-cut method for the determination of growthyields and efficiency is presented. Elemental analyses of theproducts (individually or collectively) permit one to calculatedirectly and simply the amount of substrate carbon and electronswhich are conserved, and thus the amount of substrate required,and the respiratory gas exchanges associated with the synthesis.Glucose is taken as a standard substrate with the required amounttermed Glucose Equivalent (GE, mol mol–1) or Glucose Value(GV, g g–1). Comparisons of GV with Production Values(PV) calculated from biochemical pathways (Penning de Vries,Brunsting and van Laar, 1974) show that PV = 0.88 ±0.01GV. The glucose requirement also serves as a close predictorof the heat of combustion of the product. Biomass, elemental analysis, energy content, growth efficiency, yield, glucose equivalent  相似文献   

15.
To avoid competition with food crops, biofuel feedstocks may need to be produced on economically marginal lands where yields are limited and replacement of existing vegetation will reduce soil C, foregoing some CO2 emission savings. Therefore, our first goal was to determine whether biochar application to marginal lands could improve switchgrass yield while sequestering sufficient soil C to eliminate the negative impact of cultivation. Because it may be difficult to obtain large quantities of biochar, our second goal was to compare small, incremental and large, all-at-once biochar applications. Our third goal was to determine whether biochar had any negative effects on earthworms, mycorrhizal fungi, soil bacteria, soil fungi, and soil enzyme activity. We grew switchgrass at two sites with poorly drained soils and two sites with excessively drained soils. Irrespective of site, biochar significantly increased yield when we rototilled in the entire amount before planting but not when we applied it incrementally between crop rows using a chisel plow. Biochar increased soil C stocks, in some cases increasing it beyond that found in soils of intact marginal land vegetation. Nevertheless, mixing biochar with soil had little or no impact on earthworm activity, mycorrhizal colonization, soil bacterial and fungal communities, and soil enzyme activities. We conclude that biochar may be part of an effective strategy for producing switchgrass on marginal lands, but the choice of application method depends on the relative importance of several considerations including biochar availability, switchgrass yield, C sequestration, soil erosion, and ease of application.  相似文献   

16.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

17.
Rapid determination of biomass composition is critical for the selection of shrub willow varieties with optimized biomass properties for conversion into fuels or chemicals. In order to improve the process for identifying and selecting shrub willow clones with distinct biomass composition, high-resolution thermogravimetric analysis (HR-TGA) was developed as a rapid, low-cost method for analyzing large numbers of willow biomass samples. In order to validate the HR-TGA method, bulk biomass collected from 2-year-old stems of a selected set of 25 shrub willow clones was analyzed using traditional wet chemistry techniques in addition to HR-TGA. The results of the wet chemistry and the HR-TGA method were compared using regression analysis resulting in R-squared values above 0.7 for the three main wood components, cellulose, hemicellulose, and lignin. Bark was removed from duplicate stem samples of the same clones, the proportion of bark was determined, and the debarked wood was used for HR-TGA analysis of composition. While there were significant differences in the proportions of lignin and cellulose in debarked wood compared to bulk biomass, as well as significant differences in bark percentage among clones, there was no correlation between bark percentage and bulk biomass component analysis. This work validates the effectiveness, precision, and accuracy of HR-TGA as a reasonably high-throughput method for biomass composition analysis and selection of shrub willow bioenergy crop varieties.  相似文献   

18.
Phosphorus has been considered as one of the most important limiting resources of large-scale production of microalgal biofuel. The approaches to increase biomass yield per phosphorus, along with the lipid accumulation properties of Scenedesmus sp. LX1, were investigated in this study. It was found that practical biomass yield per phosphorous was reduced with the increase of initial phosphorus (P) concentration, but increased with light intensity. The highest biomass yield per P of 4,500 kg-biomass/kg-P was achieved at initial phosphorus concentration of 0.05 mg?·?L?1 under the light intensity of 320 μmol photon?·?m?2?·?s?1. Furthermore, the lipid content per biomass and triacylglycerols (TAGs) content per lipid were found to be positively correlated to biomass yield per P. With the biomass yield increased from 2,800 kg-biomass/kg-P to 4,500 kg-biomass/kg-P, the lipid content per microalgal biomass and TAG content per lipid increased from 18.7 % to 35.0 % and from 69.5 % to 83.0 %. These results suggested a possible approach to achieve high biomass production and high lipid content simultaneously.  相似文献   

19.
Carbohydrate and lignin composition of feedstock materials are major factors in determining their bioenergy potential. This study was conducted to quantify dry biomass yield and the carbohydrate and lignin composition of six potential biofuel grasses (elephantgrass, energycane, sweetcane, giant reed, giant miscanthus, and sugarcane) across three sites in Florida for plant (2009) and first ratoon (2010) crops. Dry biomass yields ranged from about 30 to 50 Mg ha?1 and were generally greatest for elephantgrass, energycane, sweetcane, and sugarcane. Accordingly, total plant carbohydrate yields (20 to 25 Mg ha?1) were comparable among sugarcane, energycane, sweetcane, and elephantgrass, but were generally less for giant reed and even less for giant miscanthus. However, the contribution of total extractable carbohydrates and total fiber carbohydrates to total plant carbohydrate yields differed among species. Sugarcane had the highest concentrations of extractable carbohydrates (219 to 356 mg g?1), followed by energycane, then sweetcane, elephantgrass, and giant reed, with giant miscanthus having the lowest. Energycane and elephantgrass tended to have significantly more fiber glucose, and elephantgrass less xylose, than other species. Variability in total lignin concentrations on a fiber basis was relatively modest (250 to 285 mg g?1) across species, but was generally highest in sweetcane and giant reed. Overall, elephantgrass and energycane were prime regional candidates for cellulosic conversion using fermentation processes due to high yields and favorable fiber characteristics, although energycane tended to have higher extractable carbohydrates.  相似文献   

20.
Direct microscopic measurements of biomass in soil require conversion factors for calculation of the mass of microorganisms from the measured volumes. These factors were determined for two bacteria, five fungi, and a yeast isolated from soil. Moisture stress conditions occurring in nature were simulated by growth in two media using shake cultures, on agar plates, and on membranes held at 34, 330, and 1,390 kPa of suction. The observed conversion factors, i.e., the ratio between dry weight and wet volume, generally increased with increasing moisture stress. The ratios for fungi ranged from 0.11 to 0.41 g/cm3 with an average of 0.33 g/cm3. Correction of earlier data assuming 80% water and a wet-weight specific gravity of 1.1 would require a conversion factor of 1.44. The dry-weight specific gravity of bacteria and yeasts ranged from 0.38 to 1.4 g/cm3 with an average of 0.8 g/cm3. These high values can only occur at 10% ash if no more than 50% of the cell is water, and a specific conversion factor to correct past data for bacterial biomass has not yet been suggested. The high conversion factors for bacteria and yeast could not be explained by shrinkage of cells due to heat fixing, but shrinkage during preparation could not be completely discounted. Moisture stress affected the C, N, and P content of the various organisms, with the ash contents increasing with increasing moisture stress. Although further work is necessary to obtain accurate conversion factors between biovolume and biomass, especially for bacteria, this study clearly indicates that existing data on the specific gravity and the water and nutrient content of microorganisms grown in shake cultures cannot be applied when quantifying the soil microbial biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号