首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.

Background

Extensive structural studies of human DNA glycosylase hOGG1 have revealed essential conformational changes of the enzyme. However, at present there is little information about the time scale of the rearrangements of the protein structure as well as the dynamic behavior of individual amino acids.

Methods

Using pre-steady-state kinetic analysis with Trp and 2-aminopurine fluorescence detection the conformational dynamics of hOGG1 wild-type (WT) and mutants Y203W, Y203A, H270W, F45W, F319W and K249Q as well as DNA–substrates was examined.

Results

The roles of catalytically important amino acids F45, Y203, K249, H270, and F319 in the hOGG1 enzymatic pathway and their involvement in the step-by-step mechanism of oxidative DNA lesion recognition and catalysis were elucidated.

Conclusions

The results show that Tyr-203 participates in the initial steps of the lesion site recognition. The interaction of the His-270 residue with the oxoG base plays a key role in the insertion of the damaged base into the active site. Lys-249 participates not only in the catalytic stages but also in the processes of local duplex distortion and flipping out of the oxoG residue. Non-damaged DNA does not form a stable complex with hOGG1, although a complex with a flipped out guanine base can be formed transiently.

General significance

The kinetic data obtained in this study significantly improves our understanding of the molecular mechanism of lesion recognition by hOGG1.  相似文献   

2.
DNA continuously undergoes oxidation damage from both exogenous and endogenous sources, including ionizing radiation, ultraviolet light, and products of metabolism. Replication of damaged DNA sometimes gives rise to mutations which can contribute to disease and aging. One of the most mutagenic lesions caused by DNA oxidation is 7,8-dihydro-8-oxoguanine (oxoG), which, if not repaired, results in G?→?T transversions. In human cells, oxoG is repaired through excision by 8-oxoguanine-DNA glycosylase hOGG1. In addition to its glycosylase activity, hOGG1 possesses an AP-lyase activity, which catalyzes the elimination of the 3’-phosphate (β-elimination) at the nascent, or preformed abasic (AP) site. The glycosidic bond breakage is initiated by a nucleophilic attack at C1’ by the Lys-249 residue resulting in a covalent enzyme–DNA-Schiff base intermediate, which then rearranges, and undergoes elimination. The 3-D structure of hOGG1shows that DNA binding is accompanied with drastic conformational changes, including DNA kinking, eversion of oxoGua from the double helix, and insertion of few amino acid residues into DNA. Previously (Kuznetsov et al., 2005, 2007), we have studied the stopped-flow kinetics of oxoG and AP site lesions processing by hOGG1. The character of tryptophan and 2-aminopurine fluorescence traces revealed that both the protein and the damaged DNA undergo extensive conformational changes in the course of DNA substrate binding- and -cleavage. To understand better, the mechanism by which hOGG1 recognizes DNA lesions, we have examined the influence of amino acid substitutions on conformational dynamics of hOGG1 and DNA during specific site recognition and conversion. Fluorescence kinetics of enzyme mutant forms F45?W, F319?W, Y203?W, Y203A, H270?W, K249Q demonstrated the multistep character of catalytic process and made clear the role of these amino acids for hOGG1 catalysis.  相似文献   

3.
Formamidopyrimidine-DNA glycosylase (Fpg) is a primary participant in the repair of 8-oxoguanine, an abundant oxidative DNA lesion. Although the structure of Fpg has been established, amino acid residues that define damage recognition have not been identified. We have combined molecular dynamics and bioinformatics approaches to address this issue. Site-specific mutagenesis coupled with enzyme kinetics was used to test our predictions. On the basis of molecular dynamics simulations, Lys-217 was predicted to interact with the O8 of extrahelical 8-oxoguanine accommodated in the binding pocket. Consistent with our computational studies, mutation of Lys-217 selectively reduced the ability of Fpg to excise 8-oxoguanine from DNA. Dihydrouracil, also a substrate for Fpg, served as a nonspecific control. Other residues involved in damage recognition (His-89, Arg-108, and Arg-109) were identified by combined conservation/structure analysis. Arg-108, which forms two hydrogen bonds with cytosine in Fpg-DNA, is a major determinant of opposite-base specificity. Mutation of this residue reduced excision of 8-oxoguanine from thermally unstable mispairs with guanine or thymine, while excision from the stable cytosine and adenine base pairs was less affected. Mutation of His-89 selectively diminished the rate of excision of 8-oxoguanine, whereas mutation of Arg-109 nearly abolished binding of Fpg to damaged DNA. Taken together, these results suggest that His-89 and Arg-109 form part of a reading head, a structural feature used by the enzyme to scan DNA for damage. His-89 and Lys-217 help determine the specificity of Fpg in recognizing the oxidatively damaged base, while Arg-108 provides specificity for bases positioned opposite the lesion.  相似文献   

4.
The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5' to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is "hardwired." Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F(*149)) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F(*292)) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.  相似文献   

5.
During heme biosynthesis in Escherichia coli two structurally unrelated enzymes, one oxygen-dependent (HemF) and one oxygen-independent (HemN), are able to catalyze the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Oxygen-dependent coproporphyrinogen III oxidase was produced by overexpression of the E. coli hemF in E. coli and purified to apparent homogeneity. The dimeric enzyme showed a Km value of 2.6 microm for coproporphyrinogen III with a kcat value of 0.17 min-1 at its optimal pH of 6. HemF does not utilize protoporphyrinogen IX or coproporphyrin III as substrates and is inhibited by protoporphyrin IX. Molecular oxygen is essential for the enzymatic reaction. Single turnover experiments with oxygen-loaded HemF under anaerobic conditions demonstrated electron acceptor function for oxygen during the oxidative decarboxylation reaction with the concomitant formation of H2O2. Metal chelator treatment inactivated E. coli HemF. Only the addition of manganese fully restored coproporphyrinogen III oxidase activity. Evidence for the involvement of four highly conserved histidine residues (His-96, His-106, His-145, and His-175) in manganese coordination was obtained. One catalytically important tryptophan residue was localized in position 274. None of the tested highly conserved cysteine (Cys-167), tyrosine (Tyr-135, Tyr-160, Tyr-170, Tyr-213, Tyr-240, and Tyr-276), and tryptophan residues (Trp-36, Trp-123, Trp-166, and Trp-298) were found important for HemF activity. Moreover, mutation of a potential nucleotide binding motif (GGGXXTP) did not affect HemF activity. Two alternative routes for HemF-mediated catalysis, one metal-dependent, the other metal-independent, are proposed.  相似文献   

6.
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. The Schiff base intermediate formed during this reaction between Escherichia coli Fpg and DNA was trapped by reduction with sodium borohydride, and the structure of the resulting covalently cross-linked complex was determined at a 2.1-A resolution. Fpg is a bilobal protein with a wide, positively charged DNA-binding groove. It possesses a conserved zinc finger and a helix-two turn-helix motif that participate in DNA binding. The absolutely conserved residues Lys-56, His-70, Asn-168, and Arg-258 form hydrogen bonds to the phosphodiester backbone of DNA, which is sharply kinked at the lesion site. Residues Met-73, Arg-109, and Phe-110 are inserted into the DNA helix, filling the void created by nucleotide eversion. A deep hydrophobic pocket in the active site is positioned to accommodate an everted base. Structural analysis of the Fpg-DNA complex reveals essential features of damage recognition and the catalytic mechanism of Fpg.  相似文献   

7.
8-Oxoguanine-DNA glycosylases play a key role in repairing oxidatively damaged DNA. Excision repair enzymes Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein) and human 8-oxoguanine-DNA glycosylase (hOGG1) catalyze excision of 7,8-dihydro-8-oxoguanine (oxoG) from DNA and subsequent cleavage of the sugar–phosphate backbone. Contacts between DNA phosphate groups and amino acid residues of the active centers of the enzymes are of importance for specific binding and catalysis. To construct noncleavable analogs of Fpg protein and hOGG1 substrates, modifications of phosphate groups bound to a damaged nucleotide were tested for their effect on the substrate properties of modified DNA duplexes. New oxoG-containing analogs of Fpg protein and hOGG1 substrates were synthetic DNA duplexes that contained a pyrophosphate or a substituted pyrophosphate group bound with the 5- or 3-OH of 8-oxoguanosine. The duplexes proved to be recognized and specifically bound by Fpg protein and hOGG1. Analysis of the mechanism of their interaction with Fpg protein and hOGG1 showed that modification of the internucleotide phosphate bound with 3-OH of 8-oxoguanosine prevents oxoG excision from DNA. Yet both enzymes efficiently cleaved the DNA duplexes when the modified phosphate was bound with the 5-OH of 8-oxoguanosine. DNA duplexes with a pyrophosphate or substituted pyrophosphate group at 3-OH of 8-oxoguanosine are noncleavable analogs of 8-oxoguanine-DNA glycosylase substrates and can be used to study the structures of catalytically active forms of Fpg protein and hOGG1 and their prokaryotic or eukaryotic homologs in complex with oxoG-containing DNA.  相似文献   

8.
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.  相似文献   

9.
Chondroitinase B from Flavobacterium heparinum is the only known lyase that cleaves the glycosaminoglycan, dermatan sulfate (DS), as its sole substrate. A recent co-crystal structure of chondroitinase B with a disaccharide product of DS depolymerization has provided some insight into the location of the active site and suggested potential roles of some active site residues in substrate binding and catalysis. However, this co-crystal structure was not representative of the actual enzyme-substrate complex, because the disaccharide product did not have the right length or the chemical structure of the minimal substrate (tetrasaccharide) involved in catalysis. Therefore, only a limited picture of the functional role of active site residues in DS depolymerization was presented in previous structural studies. In this study, by docking a DS tetrasaccharide into the proposed active site of the enzyme, we have identified novel roles of specific active site amino acids in the catalytic function of chondroitinase B. Our conformational analysis also revealed a unique, symmetrical arrangement of active site amino acids that may impinge on the catalytic mechanism of action of chondroitinase B. The catalytic residues Lys-250, Arg-271, His-272, and Glu-333 along with the substrate binding residues Arg-363 and Arg-364 were mutated using site-directed mutagenesis, and the kinetics and product profile of each mutant were compared with recombinant chondroitinase B. Mutating Lys-250 to alanine resulted in inactivation of the enzyme, potentially attributable to the role of the residue in stabilizing the carbanion intermediate formed during enzymatic catalysis. The His-272 and Glu-333 mutants showed diminished enzymatic activity that could be indicative of a possible role for one or both residues in the abstraction of the C-5 proton from the galactosamine. In addition, the Arg-364 mutant had an altered product profile after exhaustive digestion of DS, suggesting a role for this residue in defining the substrate specificity of chondroitinase B.  相似文献   

10.
Recent data on structural and biochemical features of human 8-oxoguanine DNA glycosylase (hOGG1) has enabled detailed evaluation of the mechanism by which the damaged DNA bases are recognized and eliminated from the chain. Pre-steady-state kinetic studies with recording of conformational transitions of the enzyme and DNA substrate significantly contribute to understanding of this mechanism. In this review we particularly focus on the interrelationship between the conformational changes of interacting molecules and kinetics of their interaction and on the nature of each elementary step during the enzymatic process. Exhaustive analysis of these data and detailed mechanism of hOGG1-catalyzed reaction are proposed.  相似文献   

11.
Norman DP  Chung SJ  Verdine GL 《Biochemistry》2003,42(6):1564-1572
Members of the HhH-GPD superfamily of DNA glycosylases are responsible for the recognition and removal of damaged nucleobases from DNA. The hallmark of these proteins is a motif comprising a helix-hairpin-helix followed by a Gly/Pro-rich loop and terminating in an invariant, catalytically essential aspartic acid residue. In this study, we have probed the role of this Asp in human 8-oxoguanine DNA glycosylase (hOgg1) by mutating it to Asn (D268N), Glu (D268E), and Gln (D268Q). We show that this aspartate plays a dual role, acting both as an N-terminal alpha-helix cap and as a critical residue for catalysis of both base excision and DNA strand cleavage by hOgg1. Mutation of this residue to asparagine, another helix-capping residue, preserves stability of the protein while drastically reducing enzymatic activity. A crystal structure of this mutant is the first to reveal the active site nucleophile Lys249 in the presence of lesion-containing DNA; this structure offers a tantalizing suggestion that base excision may occur by cleavage of the glycosidic bond and then attachment of Lys249. Mutation of the aspartic acid to glutamine and glutamic acid destabilizes the protein fold to a significant extent but, surprisingly, preserves catalytic activity. Crystal structures of these mutants complexed with an unreactive abasic site in DNA reveal these residues to adopt a sterically disfavored helix-capping conformation.  相似文献   

12.
Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) to form orthophosphate and acetaldehyde. The reaction proceeds via a Schiff-base intermediate formed between Lys-53 and the Pald carbonyl. The x-ray crystal structures of the wild-type phosphonatase complexed with Mg(II) alone or with Mg(II) plus vinylsulfonate (a phosphonoethylenamine analog) were determined to 2.8 and 2.4 A, respectively. These structures were used to determine the identity and positions of active site residues surrounding the Lys-53 ammonium group and the Pald carbonyl. These include Cys-22, His-56, Tyr-128, and Met-49. Site-directed mutagenesis was then employed to determine whether or not these groups participate in catalysis. Based on rate contributions, Tyr-128 and Cys-22 were eliminated as potential catalytic groups. The Lys-53 epsilon-amino group, positioned for reaction with the Pald carbonyl, forms a hydrogen bond with water 120. Water 120 is also within hydrogen bond distance of an imidazole nitrogen of His-56 and the sulfur atom of Met-49. Kinetic constants for mutants indicated that His-56 (1000-fold reduction in k(cat)/K(m) upon Ala substitution) and Met-49 (17,000-fold reduction in k(cat)/K(m) upon Leu substitution) function in catalysis of Schiff-base formation. Based on these results, it is proposed that a network of hydrogen bonds among Lys-53, water 120, His-56, and Met-49 facilitate proton transfer from Lys-53 to the carbinolamine intermediate. Comparison of the vinylsulfonate complex versus unliganded structures indicated that association of the cap and core domains is essential for the positioning of the Lys-53 for attack at the Pald carbonyl and that substrate binding at the core domain stabilizes cap domain binding.  相似文献   

13.
Formamidopyrimidine-DNA-glycosylase (Fpg pro tein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2′-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation.  相似文献   

14.
Both Lys-166 and His-291 of ribulosebisphosphate carboxylase/oxygenase fromRhodospirillum rubrum have been implicated as the active-site residue that initiates catalysis. To decide between these two candidates, we resorted to site-directed mutagenesis to replace Lys-166 and His-291 with several amino acids. All 7 of the position-166 mutants tested are severely deficient in carboxylase activity, whereas the alanine and serine mutants at position 291 are ∼40% and ∼18% as active as the native carboxylase, essentially ruling out His-291 in theRhodospirillum rubrum carboxylase (and by inference His-298 in the spinach enzyme) as a catalytically essential residue. The ability of some of the mutant proteins to undergo carbamate formation or to bind either ribulosebisphosphate or a transition-state analogue remains largely unimpaired. This implies that Lys-166 is not required for substrate binding; rather, the results corroborate the earlier postulate that Lys-166 functions as an acid-base group in catalysis or in stabilizing a transition state in the reaction pathway.  相似文献   

15.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

16.
In order to evaluate the possible contributions of Lys-204, Tyr-224, Tyr-228, and His-307 in porcine kidney D-amino acid oxidase [EC 1.4.3.3] (DAO) to its catalytic function, we constructed four point mutant cDNAs encoding enzymes possessing Glu-204, Phe-224, Phe-228, and Leu-307 by oligonucleotide-directed in vitro mutagenesis. The four mutant cDNAs and the wild type cDNA could be expressed in vitro with similar efficiencies and about 200 ng of each enzyme protein was produced from 5 micrograms of the respective capped RNA. The electrophoretic mobilities of the in vitro synthesized mutant enzymes on SDS-polyacrylamide gel were almost identical with that of the wild type DAO, and the molecular weight was calculated to be 38,000. The Glu-204 and Phe-224 mutant DAOs showed comparable enzyme activities to that of the wild type enzyme, and were inhibited strongly by sodium benzoate, a potent competitive inhibitor of DAO. The kinetic parameters of the two mutant DAOs were also comparable to those of the wild type DAO. On the other hand, the Phe-228 and Leu-307 mutant DAOs showed no detectable activity. The results indicate that Tyr-228 and His-307 play important roles as to the constitution of the active site or participate in the reaction directly, while Lys-204 and Tyr-224 are not essential in the enzyme reaction.  相似文献   

17.
The effector binding site of Escherichia coli aspartate transcarbamoylase, composed of the triphosphate and ribose-base subsites, is located on the regulatory (r) chains of the enzyme. In order to probe the function of amino acid side chains at this nucleotide triphosphate site, site-specific mutagenesis was used to create three mutant versions of the enzyme. On the basis of the three-dimensional structure of the enzyme with CTP bound, three residues were selected. Specifically, Arg-96r was replaced with Gln, and His-20r and Tyr-89r were both replaced with Ala. Analyses of these mutant enzymes indicate that none of these substitutions significantly alter the catalytic properties of the enzyme. However, the mutations at His-20r and Tyr-89r produced altered response to the regulatory nucleotides. For the His-20r----Ala enzyme, the affinities of the enzyme for ATP and CTP are reduced 40-fold and 10-fold, respectively, when compared with the wild-type enzyme. Furthermore, CTP is able to inhibit the His-20r----Ala enzyme 40% more than the wild-type enzyme. In the case of the Tyr-89r----Ala enzyme. ATP can increase the mutant enzyme's activity 181% compared to 157% for the wild-type enzyme, while simultaneously the affinity of this enzyme for ATP decreases about 70%. These results suggest that Tyr-89r does have an indirect role in the discrimination between ATP and CTP. The His-20r----Ala enzyme shows no UTP synergistic inhibition in the presence of CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes relaxation of supercoiled DNA by cleaving and rejoining DNA strands through a DNA- (3'-phosphotyrosyl)-enzyme intermediate. We have performed a kinetic analysis of mutational effects at four essential amino acids: Arg-130, Gly-132, Tyr-136 and Lys-167. Arg-130, Gly-132 and Lys-167 are conserved in all members of the type IB topoisomerase family. Tyr-136 is conserved in all poxvirus topoisomerases. We show that Arg-130 and Lys-167 are required for transesterification chemistry. Arg-130 enhances the rates of both cleavage and religation by 10(5). Lys-167 enhances the cleavage and religation reactions by 10(3) and 10(4), respectively. An instructive distinction between these two essential residues is that Arg-130 cannot be replaced by lysine, whereas substituting Lys-167 by arginine resulted in partial restoration of function relative to the alanine mutant. We propose that both basic residues interact directly with the scissile phosphate at the topoisomerase active site. Mutations at positions Gly-132 and Tyr-136 reduced the rate of strand cleavage by more than two orders of magnitude, but elicited only mild effects on religation rate. Gly-132 and Tyr-136 are suggested to facilitate a pre-cleavage activation step. The results of comprehensive mutagenesis of the vaccinia topoisomerase illuminate mechanistic and structural similarities to site-specific recombinases.  相似文献   

19.
After purification from the crude commercial preparation, the 3D structure of the synthetically valuable lipase from Pseudomonas stutzeri (LipC) is described through homology modelling, leading to a rational explanation of its catalytic behaviour. This elucidates that the enzyme has an active site defined by residues Ser-109, His-277 and Asp-255, and an oxyanion hole formed by peptidic NH groups from Met-43 and His-110. Interestingly, the active site is covered by two lids, one of them (Lid1, residues 145–181) being larger than the other (Lid2, residues 233–253). The opening and closing of these lids have been simulated by molecular modelling assuming both water and pure THF as solvents. Accordingly, THF clearly helps the exposure of the catalytic serine to the reaction medium which explains its excellent reported performance in this organic solvent. On the other hand, the stereospecificity of this enzyme is explained considering a small hydrophobic cavity formed by Gly-45, Phe-46, Tyr-54, Trp-55, Leu-278, Val-281 and Phe-284; particularly, Tyr-54 plays an important role in substrate recognition. In fact, in benzoin acylation, this residue forces the benzoyl group of the substrate to go into that cavity via H bonding with the carbonyl O atom of benzoin, thereby explaining the observed S-preference in benzoin acylation, which apparently contradicts the canonical Kazlauskas’ rule. For other alcohols non possessing the α-hydroxycarbonyl core, Tyr-54 is allowing the entrance into the above-mentioned hydrophobic cavity only to those substrates with no steric hindrance in the vicinity of the hydroxymethane moiety.  相似文献   

20.
Formamidopyrimidine-DNA glycosylase (Fpg) is responsible for removal of 8-oxoguanine (8-oxoG) and other oxidized purine lesions from DNA and can also excise some oxidatively modified pyrimidines [such as dihydrouracil (DHU)]. Fpg is also specific for a base opposite the lesion, efficiently excising 8-oxoG paired with C but not with A. We have applied stopped-flow kinetics using intrinsic tryptophan fluorescence of the enzyme and fluorescence of 2-aminopurine-labeled DNA to analyze the conformational dynamics of Escherichia coli Fpg during processing of good substrates (8-oxoG.C), poor substrates (8-oxoG.A), and substrates of unclear specificity (such as DHU and 8-oxoG opposite T or G). The analysis of fluorescence traces allows us to conclude that when the enzyme encounters its true substrate, 8-oxoG.C, the complex enters the productive catalytic reaction after approximately 50 ms, partitioning the substrate away from the competing dissociation process, while poor substrates linger in the initial encounter complex for longer. Several intermediate ES complexes were attributed to different structures that exist along the reaction pathway. A likely sequence of events is that the damaged base is first destabilized by the enzyme binding and then everted from DNA, followed by insertion of several amino acid residues into DNA and isomerization of the enzyme into a pre-excision complex. We conclude that rejection of the incorrect substrates occurs mostly at the early stage of formation of the pre-eversion recognition complex, supporting the role of indirect readout in damage recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号