首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background aimsHuman endothelial progenitor cells (EPC) play an important role in regenerative medicine and contribute to neovascularization on vessel injury. They are usually enriched from peripheral blood, cord blood and bone marrow. In human fat tissue, EPC are rare and their isolation remains a challenge.MethodsFat tissue was prepared by collagenase digestion, and the expression of specific marker proteins was evaluated by flow cytometry in the stromal vascular fraction (SVF). For enrichment, magnetic cell sorting was performed with the use of CD133 microbeads and EPC were cultured until colonies appeared. A second purification was performed with CD34; additional isolation steps were performed with the use of a combination of CD34 and CD31 microbeads. Enriched cells were investigated by flow cytometry for the expression of endothelial specific markers, by Matrigel assay and by the uptake of acetylated low-density lipoprotein.ResultsThe expression pattern confirmed the heterogeneous nature of the SVF, with rare numbers of CD133+ detectable. EPC gained from the SVF by magnetic enrichment showed cobblestone morphology of outgrowth endothelial cells and expressed the specific markers CD31, CD144, vascular endothelial growth factor (VEGF)R2, CD146, CD73 and CD105. Functional integrity was confirmed by uptake of acetylated low-density lipoprotein and the formation of tube-like structures on Matrigel.ConclusionsRare EPC can be enriched from human fat tissue by magnetic cell sorting with the use of a combination of microbeads directed against CD133, an early EPC marker, CD34, a stem cell marker, and CD31, a typical marker for endothelial cells. In culture, they differentiate into EC and hence could have the potential to contribute to neovascularization in regenerative medicine.  相似文献   

2.
探讨AMD3100对apoE-/-小鼠骨髓内皮祖细胞的动员作用及其增殖、迁移和黏附的影响.12只8周龄雄性apoE-/-小鼠随机分为AMD3100组(2.5 mg/(kg·2d))和对照组(PBS 0.1 ml/2d),高脂高胆固醇饲料喂养12周后,差速贴壁法结合微孔法分离培养小鼠骨髓细胞,免疫荧光鉴定CD133/VEGFR-2双阳性细胞为内皮祖细胞;MTT比色法、Transwell、黏附试验分别检测细胞的增殖、迁移和黏附能力;通过计数典型内皮祖细胞克隆形成单位,观察次级集落单位的大小及细胞密度,检测各组内皮祖细胞的克隆形成能力;RT-PCR和Western blot检测内皮祖细胞上CXCR4 mRNA和蛋白质表达水平.与对照组比较,AMD3100组骨髓源性内皮祖细胞的增殖、迁移、黏附和克隆形成能力均显著低于对照组,其CXCR4mRNA和蛋白质表达均显著低于对照组.结果表明:持续注射AMD3100可抑制骨髓源内皮祖细胞的增殖、迁移、黏附和克隆形成能力,并下调CXCR4的表达.  相似文献   

3.
We previously reported that CD31(bright) cells, which were sorted from cultured AC133(+) cells of adult peripheral blood cells, differentiated more efficiently into endothelial cells than CD31(+) cells or CD31(-) cells, suggesting that CD31(bright) cells may be endothelial precursor cells. In this study, we found that CD31(bright) cells have a strong ability to release cytokines. The mixture of vascular endothelial growth factor (VEGF), thrombopoietin (TPO), and stem cell factor stimulated ex vivo expansion of the total cell number from cultured AC133(+) cells of adult peripheral blood cells and cord blood cells, resulting in incrementation of the adhesion cells, in which endothelial nitric oxide synthase and kinase insert domain-containing receptor were positive. Moreover, the mixture of VEGF and TPO increased the CD31(bright) cell population when compared with VEGF alone or the mixture of VEGF and stem cell factor. These data suggest that TPO is an important growth factor that can promote endothelial precursor cells expansion ex vivo.  相似文献   

4.
Autologous endothelial progenitor cell (EPC) transplantation has been suggested as a potential therapeutic approach in diabetic neuropathy (DN). However, such treatment might be limited by safety concerns regarding possible unwanted proliferation or differentiation of the transplanted stem cells. An alternative approach is the stimulation of endogenous bone-marrow-derived EPC (BM-EPC) recruitment into ischemic lesions by the administration of stem cell mobilization agents or chemokines. We first tested the EPC mobilization effect of vascular endothelial growth factor (VEGF) and AMD3100 in a mouse model of diabetes and found that AMD3100 was effective as an EPC mobilization agent, whereas VEGF did not increase circulating EPCs in these animals. Because recent studies have suggested that deceased local expression of stromal-cell-derived factor (SDF)-1α in diabetes is the main cause of defective EPC migration, AMD3100 was administrated systemically to stimulate EPC mobilization and SDF-1α was injected locally to enhance its migration into the streptozotocin-induced DN mice model. This combined therapy increased local expression levels of vasculogenesis-associated factors and newly formed endothelial cells in the sciatic nerve, resulting in the restoration of the sciatic vasa nervorum. The treatment also improved the impaired conduction velocity of the sciatic nerve in DN mice. Thus, AMD3100 might be an effective EPC mobilization agent in diabetes, with local SDF-1α injection synergistically increasing vascularity in diabetic nerves. This represents a novel potential therapeutic option for DN patients.  相似文献   

5.
目的探讨AMD3100阻断SDF-1/CXCR4轴后,对局灶脑缺血/再灌注大鼠缺血半暗带血管再生的影响。方法将SD大鼠随机分为假手术组(S组)、模型组(IR组)、AMD3100组(IRA组)、生理盐水组(IRN组)。采用线栓法制备大鼠局灶脑缺血/再灌注模型,缺血2h后将IR、IRA和IRN组分为再灌注12h,1、3和7d四个亚组。HE染色观察局灶脑缺血/再灌注后大脑皮质病理变化。免疫组化法检测CD31在缺血半暗带表达。荧光定量PCR检测外周血中AC133mRNA表达。结果与IRN组比较,IRA 12h外周血中AC133mRNA显著升高,第1d升高达峰值(P0.01),IRA 3dAC133mRNA表达比IRA1d显著减少(P0.05);与IRN组比较,IRA组CD31阳性血管密度在第1d无显著变化(P0.05),第3和7d血管密度显著减少(P0.01);IRA 7d梗死区由大量坏死神经细胞和泡沫细胞填充,坏死较严重。结论持续注射AMD3100能动员干/祖细胞快速进入外周血,但可能抑制局灶脑缺血/再灌注大鼠缺血半暗带血管再生,加重梗死区坏死。  相似文献   

6.
BackgroundLipoprotein (a) (Lp(a)) is one of the risk factors for peripheral artery disease (PAD). Our previous report demonstrated that hepatocyte growth factor (HGF) gene therapy attenuated the impairment of collateral formation in Lp(a) transgenic mice. Since risk factors for atherosclerosis accelerate endothelial senescence and impair angiogenesis, we examined the role of Lp(a) in dysfunction and senescence of endothelial progenitor cells (EPC) and endothelial cells.MethodsIn vitro and in vivo incorporation assays were performed using ex-vivo expanded DiI-labeled human EPC. Senescence of cultured endothelial cells, production of oxidative stress and angiogenesis function were evaluated by SA-β-galactosidase staining, dihydroethidium (DHE) staining and Matrigel assay, respectively.ResultsEPC transplantation significantly stimulated recovery of ischemic limb perfusion, while EPC pre-treated with Lp(a) did not increase ischemic limb perfusion. Impairment of angiogenesis by EPC with Lp(a) was associated with a significant decrease in CD31-positive capillaries and DiI-labeled EPC. Importantly, Lp(a) significantly accelerated the onset of senescence and production of reactive oxygen species (ROS) in human aortic endothelial cells, accompanied by a significant increase in the protein expression of p53 and p21. On the other hand, HGF significantly attenuated EPC dysfunction, senescence, ROS production, and p53 and p21 expression induced by Lp(a).ConclusionLp(a) might affect atherosclerosis via acceleration of senescence, ROS production, and functional impairment of the endothelial cell lineage. HGF might have inhibitory effects on these atherogenic actions of Lp(a).  相似文献   

7.
8.

Aims

Several studies suggest that circulating bone marrow derived stem cells promote the regeneration of ischemic tissues. For hematopoietic stem cell transplantation combinatorial granulocyte-colony stimulating factor (G-CSF)/Plerixafor (AMD3100) administration was shown to enhance mobilization of bone marrow derived stem cells compared to G-CSF monotherapy. Here we tested the hypothesis whether combinatorial G-CSF/AMD3100 therapy has beneficial effects in cardiac recovery in a mouse model of myocardial infarction.

Methods

We analyzed the effect of single G-CSF (250 µg/kg/day) and combinatorial G-CSF/AMD3100 (100 µg/kg/day) treatment on cardiac morphology, vascularization, and hemodynamics 28 days after permanent ligation of the left anterior descending artery (LAD). G-CSF treatment started directly after induction of myocardial infarction (MI) for 3 consecutive days followed by a single AMD3100 application on day three after MI in the G-CSF/AMD3100 group. Cell mobilization was assessed by flow cytometry of blood samples drawn from tail vein on day 0, 7, and 14.

Results

Peripheral blood analysis 7 days after MI showed enhanced mobilization of white blood cells (WBC) and endothelial progenitor cells (EPC) upon G-CSF and combinatorial G-CSF/AMD3100 treatment. However, single or combinatorial treatment showed no improvement in survival, left ventricular function, and infarction size compared to the saline treated control group 28 days after MI. Furthermore, no differences in histology and vascularization of infarcted hearts could be observed.

Conclusion

Although the implemented treatment regimen caused no adverse effects, our data show that combinatorial G-CSF/AMD therapy does not promote myocardial regeneration after permanent LAD occlusion.  相似文献   

9.
BACKGROUND: The aim of this study was to identify circulating endothelial progenitor cells (EPC) with colony-forming capacity and compare them with the monocytic-macrophage lineage. METHODS: Forty-two healthy donors were analyzed. EPC were cultured with VEGF and b-FGF. Sequential studies were performed on days +7 (colonies) +21 and +35. Monocytic cells were cultured using the same conditions as EPC until day +21 or alternatively by adding IGF. RESULTS: The number of EPC colonies was higher in BM than in mobilized or steady-state PB. Using EPC medium, monocytic cells formed cord-like structures but no colonies. However, colonies grew when IGF was added to the medium. By immunocytochemistry, colonies showed CD45, CD31 and lysozyme but no vWF. Colonies were CD4+, CD13+dim, CD14+, CD15++, CD16-/+dim, CD31+dim, CD33+dim, CD45+, CD105-/+dim, lysozyme+ and VE-cadherin+, and constantly negative for CD34, CD133 and KDR, when flow cytometry was used. The immunophenotype of pre-cultured and cultured monocytes was similar to that described for EPC. DISCUSSION: Our results suggest that the so-called 'EPC' obtained at 7 days of culture belong to the monocyte-macrophage lineage, as they share immunophenotypic and molecular features.  相似文献   

10.
Wang  Xiaoyi  Jiang  Huijiao  Guo  Lijiao  Wang  Sibo  Cheng  Wenzhe  Wan  Longfei  Zhang  Zhongzhou  Xing  Lihang  Zhou  Qing  Yang  Xiongfeng  Han  Huanhuan  Chen  Xueling  Wu  Xiangwei 《Journal of molecular histology》2021,52(6):1155-1164

Cell-based therapeutics bring great hope in areas of unmet medical needs. Mesenchymal stem cells (MSCs) have been suggested to facilitate neovascularization mainly by paracrine action. Endothelial progenitor cells (EPCs) can migrate to ischemic sites and participate in angiogenesis. The combination cell therapy that includes MSCs and EPCs has a favorable effect on ischemic limbs. However, the mechanism of combination cell therapy remains unclear. Herein, we investigate whether stromal cell-derived factor (SDF)-1 secreted by MSCs contributes to EPC migration to ischemic sites via CXCR4/Phosphoinositide 3-Kinases (PI3K)/protein kinase B (termed as AKT) signaling pathway. First, by a “dual-administration” approach, intramuscular MSC injections were supplemented with intravenous Qdot® 525 labeled-EPC injections in the mouse model of hind limb ischemia. Then, the mechanism of MSC effect on EPC migration was detected by the transwell system, tube-like structure formation assays, western blot assays in vitro. Results showed that the combination delivery of MSCs and EPCs enhanced the incorporation of EPCs into the vasculature and increased the capillary density in mouse ischemic hind limb. The numbers of CXCR4-positive EPCs increased after incubation with MSC-conditioned medium (CM). MSCs contributed to EPC migration and tube-like structure formation, both of which were suppressed by AMD3100 and wortmannin. Phospho-AKT induced by MSC-CM was attenuated when EPCs were pretreated with AMD3100 and wortmannin. In conclusion, we confirmed that MSCs contributes to EPC migration, which is mediated via CXCR4/PI3K/AKT signaling pathway.

  相似文献   

11.
Endothelial progenitor cells (EPC) participate in revascularization and angiogenesis. EPC can be cultured in vitro from mononuclear cells of peripheral blood, umbilical cord blood or bone marrow; they also can be transdifferentiated from mesenchymal stem cells (MSC). We isolated EPCs from Wharton's jelly (WJ) using two methods. The first method was by obtaining MSC from WJ and characterizing them by flow cytometry and their adipogenic and osteogenic differentiation, then applying endothelial growth differentiating media. The second method was by direct culture of cells derived from WJ into endothelial differentiating media. EPCs were characterized by morphology, Dil-LDL uptake/UEA-1 immunostaining and testing the expression of endothelial markers by flow cytometry and RT-PCR. We found that MSC derived from WJ differentiated into endothelial-like cells using simple culture conditions with endothelium induction agents in the medium.  相似文献   

12.
Background aimsDelivery of bone marrow–derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing.MethodsA transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 d with AMD3100 or saline control. Mesenchymal stromal cells, hematopoietic stem and progenitor cells and endothelial progenitor cells in the peripheral blood and bone marrow were evaluated by means of flow cytometry, automated hematology analysis and cell culture 24 h after injection and/or fracture. Healing was assessed up to 84 d after fracture by histomorphometry and micro–computed tomography.ResultsAMD3100 injection resulted in higher numbers of circulating mesenchymal stromal cells, hematopoietic stem cells and endothelial progenitor cells. Micro-computed tomography data demonstrated that the fracture callus was significantly larger compared with the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than do saline-treated counterparts at day 84.ConclusionsOur data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration.  相似文献   

13.
Tissue engineering may offer patients new options when replacement or repair of an organ is needed. However, most tissues will require a microvascular network to supply oxygen and nutrients. One strategy for creating a microvascular network would be promotion of vasculogenesis in situ by seeding vascular progenitor cells within the biopolymeric construct. To pursue this strategy, we isolated CD34(+)/CD133(+) endothelial progenitor cells (EPC) from human umbilical cord blood and expanded the cells ex vivo as EPC-derived endothelial cells (EC). The EPC lost expression of the stem cell marker CD133 but continued to express the endothelial markers KDR/VEGF-R2, VE-cadherin, CD31, von Willebrand factor, and E-selectin. The cells were also shown to mediate calcium-dependent adhesion of HL-60 cells, a human promyelocytic leukemia cell line, providing evidence for a proinflammatory endothelial phenotype. The EPC-derived EC maintained this endothelial phenotype when expanded in roller bottles and subsequently seeded on polyglycolic acid-poly-l-lactic acid (PGA-PLLA) scaffolds, but microvessel formation was not observed. In contrast, EPC-derived EC seeded with human smooth muscle cells formed capillary-like structures throughout the scaffold (76.5 +/- 35 microvessels/mm(2)). These results indicate that 1) EPC-derived EC can be expanded in vitro and seeded on biodegradable scaffolds with preservation of endothelial phenotype and 2) EPC-derived EC seeded with human smooth muscle cells form microvessels on porous PGA-PLLA scaffolds. These properties indicate that EPC may be well suited for creating microvascular networks within tissue-engineered constructs.  相似文献   

14.
In vitro cultured endothelial progenitor cells (cEPC) are used for intracoronary cell therapy in cardiac regeneration. The aim of this study was to investigate whether cEPC and circulating mononuclear cells (MNC), which include a small number of in vivo circulating EPC, are able to transmigrate through the endothelial barrier into the cardiac tissue. MNC and EPC were isolated from the peripheral blood from healthy male volunteers (n = 13, 25+/-6 years) and stained with a fluorescent marker. The cells were perfused in vitro through organs with endothelial layers of different phenotypes (rat aorta, human umbilical vein, isolated mouse heart). The endothelium and the basal lamina were then stained by immunofluorescence and the cryo-sections analysed using a confocal laser scanning microscope. After perfusion through the rat aorta, an adhesion/integration of MNC was observed at the endothelial layer and the basal lamina beneath endothelial cells. However, no migration of MNC over the endothelial barrier was found. This remained true even when the cell numbers were increased (from 0.5 to 10 million cells/h), when the time of perfusion was prolonged (1.5-4 h) and when the aorta was cultivated for 24 h. In the Langendorff-perfused mouse heart with intact endothelium, no migration of MNC (1 x 10(7)) or cEPC (1 x 10(6)) was observed after 0.5 and 2 h. In conclusion, MNC and cEPC do not possess any capacity to transmigrate the endothelial barrier. In the context of stem cell therapy, these cells may therefore serve as endothelial regenerators but not as cardiomyocyte substitutes.  相似文献   

15.
The culture of endothelial progenitor cells (EPC) provides an excellent tool to research on EPC biology and vascular regeneration and vasculogenesis. The use of different protocols to obtain EPC cultures makes it difficult to obtain comparable results in different groups. This work offers a systematic comparison of the main variables of most commonly used protocols for EPC isolation, culture and functional evaluation. Peripheral blood samples from healthy individuals were recovered and mononuclear cells were cultured. Different recovery and culture conditions were tested: blood volume, blood anticoagulant, coating matrix and percentage of foetal bovine serum (FBS) in culture media. The success of culture procedure, first colonies of endothelial cells appearance time, correlation with number of circulating EPC (cEPC) and functional comparison with human umbilical vein endothelial cells (HUVEC) were studied. The use of heparin, a minimum blood volume of 30 ml, fibronectin as a coating matrix and endothelial growing media‐2 supplemented with 20% FBS increased the success of obtaining EPC cultures up to 80% of the processed samples while reducing EPC colony appearance mean time to a minimum of 13 days. Blood samples exhibiting higher cEPC numbers resulted in reduced EPC colony appearance mean time. Cells isolated by using this combination were endothelial cell‐like EPCs morphological and phenotypically. Functionally, cultured EPC showed decreased growing and vasculogenic capacity when compared to HUVEC. Thus, above‐mentioned conditions allow the isolation and culture of EPC with smaller blood volumes and shorter times than currently used protocols.  相似文献   

16.

Background

Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1), a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC) to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL) whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.

Methods

Wild-type (WT) BALB/c and eosinophil deficient (PHIL) mice were sensitized to house dust mite (HDM) using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD) and airway methacholine responsiveness (AHR).

Results

Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.

Conclusions

This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.  相似文献   

17.
Cyclosporin A (CsA) improves the success rate of transplantation. The CD26/dipeptidylpeptidase IV (DPP IV) system plays a critical role in mobilizing endothelial progenitor cells (EPCs) from bone marrow. This study investigated whether CsA manipulates CD26/DPP IV activity and increases EPC mobilization. C57BL/6 mice were divided into control and CsA-treated groups. Before and after hindlimb ischemia was induced, circulating EPC number and serum levels of different cytokines were measured. Compared with the controls, CsA treatment significantly increased the blood levels of stroma-derived factor-1alpha and stem cell factor after ischemic stress (P < 0.001). The CsA group displayed a significant increase in the number of circulating EPCs (sca-1+KDR+ and c-kit+CD31+ EPCs, both P < 0.05). In vivo, CsA caused a significant increase in the numbers of EPCs incorporated into the Matrigel and ischemic limbs (P < 0.05). In the peripheral blood, CsA significantly decreased CD26+ cell numbers and attenuated the plasma CD26/DPP IV activity (P < 0.001). Furthermore, short-term CsA treatment significantly improved the perfusion of ischemic limbs and decreased the spontaneous digital amputation rate. In summary, CsA manipulates the mobilization of EPCs into the circulation via the CD26/DPP IV system. Short-term CsA treatment has beneficial effects on angiogenesis of ischemic tissues.  相似文献   

18.
Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC). These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI) with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD). There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens), as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear cells. The maximum number of stem cells was found early in ST-segment elevation myocardial infarction (<12 hours) with subsequent decrease through the 7-day follow-up and with concomitant changes in the levels of cytokines involved in the inflammatory response and stem cell recruitment. Moreover, peak expression of cardiac muscle and endothelial markers occurred at the same time as the most significant increase in CD34/CXCR4+ stem cell number. The SDF-1/CXCR-4 axis seems particularly important in stem/muscle progenitor cell homing, chemotaxis, engraftment and retention in ischaemic myocardium. The significance of autologous stem cells mobilization in terms of cardiac salvage and regeneration needs to be proved in humans but it seems to be a reparative mechanism triggered early in the course of acute coronary syndromes.  相似文献   

19.
Yang N  Li D  Jiao P  Chen B  Yao S  Sang H  Yang M  Han J  Zhang Y  Qin S 《Cytotechnology》2011,63(3):217-226
Endothelial progenitor cells (EPCs) derived from bone marrow are known to be heterogeneous. In this study, we tried to find favorable conditions that induce the differentiation of mononuclear cells (MNCs) from bone marrow into EPCs. The differentiation capacity of MNCs from rat bone marrow was investigated in different conditions, such as different media, different induction times and different culture surfaces. The cell morphology and endothelial biomarkers associated with differentiated MNCs were studied. Our results indicated that MNCs cultured in EGM-2MV (Endothelial cell basal medium-2, plus SingleQuots of growth supplements) developed a bursiform shape, a late EPC-like morphology, while MNCs cultured in complete medium (CM, M199 with 10% FBS, 20 ng/mL VEGF and 10 ng/mL bFGF) showed a spindle shape, an early EPC-like morphology. Cells of both morphologies were able to incorporate DiI-ac-LDL and bind lectin in vitro. MNCs cultured in EGM-2MV exhibited a higher proliferation rate and higher eNOS expression than MNCs cultured in CM. MNCs cultured in EGM-2MV had the ability to form tubes on Matrigel. Flow cytometry results indicated that CD133 expression was highest at day 12 and that the greatest number of cells positive for both FLK-1 and CD133 appeared at day 20 from cells cultured in dishes without fibronectin coating. In addition, the expression levels of CD133, CD31 and FLK-1/CD133 were not significantly different between cells of different shapes. Our experiments suggest that MNCs from bone marrow can be differentiated into late EP-like cells in EGM-2MV, which have the ability to rapidly proliferate. These MNCs can also be differentiated into early EP-like cells in CM. Additionally, fibronectin may not be necessary for the differentiation of EPCs to mature ECs after three generations. Differentiated MNCs from bone marrow in EGM-2MV have the characteristics of EPCs, although the expression levels of EPC markers were lower than previously reported.  相似文献   

20.
The chemokine receptors CCR5 and CXCR4 are the major coreceptors for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). At least 12 other chemokine receptors or close relatives support infection by particular HIV and SIV strains on CD4(+) transformed indicator cell lines in vitro. However, the role of these alternative coreceptors in vivo is presently thought to be insignificant. Infection of cell lines expressing high levels of recombinant CD4 and coreceptors thus does not provide a true indication of coreceptor use in vivo. We therefore tested primary untransformed cell cultures that lack CCR5 and CXCR4, including astrocytes and brain microvascular endothelial cells (BMVECs), for naturally expressed alternative coreceptors functional for HIV and SIV infection. An adenovirus vector (Ad-CD4) was used to express CD4 in CD4(-) astrocytes and thus confer efficient infection if a functional coreceptor is present. Using a large panel of viruses with well-defined coreceptor usage, we identified a subset of HIV and SIV strains able to infect two astrocyte cultures derived from adult brain tissue. Astrocyte infection was partially inhibited by several chemokines, indicating a role for the chemokine receptor family in the observed infection. BMVECs were weakly positive for CD4 but negative for CCR5 and CXCR4 and were susceptible to infection by the same subset of isolates that infected astrocytes. BMVEC infection was efficiently inhibited by the chemokine vMIP-I, implicating one of its receptors as an alternative coreceptor for HIV and SIV infection. Furthermore, we tested whether the HIV type 1 and type 2 strains identified were able to infect peripheral blood mononuclear cells (PBMCs) via an alternative coreceptor. Several strains replicated in Delta32/Delta32 CCR5 PBMCs with CXCR4 blocked by AMD3100. This AMD3100-resistant replication was also sensitive to vMIP-I inhibition. The nature and potential role of this alternative coreceptor(s) in HIV infection in vivo is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号