首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
While the biophysics of anemophilous pollen dispersal is understood in principle, empirical studies for testing such principles are rare, particularly in native ecosystems. This paper describes mechanisms underlying the dispersal of Artemisia pollen in a Wyoming sagebrush steppe. The relationships between meteorological variables and pollen flux were defined during the 1999 Artemisia flowering season, and detailed processes at the individual plant level were experimentally tested in the field in 2000. Results indicated that Artemisia pollen presentation is continuous but with early morning maxima. Atmospheric pollen concentrations and potential dispersal rates are controlled at diurnal time scales by individual flower development together with characteristic changes in temperature/humidity and wind speeds, at multi-day scales by frontal weather patterns, and at week-long scales by flowering phenology.  相似文献   

2.
Insect herbivores can reduce growth, seed production, and population dynamics of host plants, but do not always do so. Big sagebrush (Artemisia tridentata) has one of the largest ranges of any shrub in North America, and is the dominant and characteristic shrub of the extensive sagebrush steppe ecosystem of the western United States. Nevertheless, the impact of insect herbivores on big sagebrush, its dominant and characteristic shrub, is largely unknown. Occasional large effects of insect herbivore outbreaks are documented, but there is little knowledge of the impact of the more typical, nominal herbivory that is produced by the diverse community of insects associated with big sagebrush in natural communities. In 2008, we removed insects from big sagebrush plants with insecticide to evaluate whether insect herbivores reduced growth and seed production of big sagebrush. Removal of herbivores led to significant and substantial increases in inflorescence growth (22%), flower production (325%), and seed production (1053%) of big sagebrush. Our results showed the impact of insect herbivory in the current growing season on the growth and reproduction of big sagebrush and revealed an unrecognized, significant role of non-outbreak herbivores on big sagebrush.  相似文献   

3.
For much of the western USA, precipitation occurs in pulses, the nature of which determine soil water potential and plant physiological performance. This research utilized three experiments to examine the sensitivity of photosynthesis and water relations for two widespread Great Basin Desert shrub species, Artemisia tridentata (which has both deep and shallow roots) and Purshia tridentata (which reportedly has only deep roots), to (1) variation in pulse magnitude size, (2) the kinetics of responses to pulses, and (3) the relationship between pulse-size and antecedent soil water content. At the study site in the southwestern Great Basin Desert, USA, summer rainfall exhibits a greater frequency of larger-sized events, and longer inter-pulse intervals, compared to annual patterns. Compared to pre-watering values, stem water potential initially increased by about 2.00 MPa for A. tridentata and 1.00 MPa for P. tridentata following watering to simulate an 11.5 mm rainfall pulse. For the same water addition, stomatal conductance increased by 0.3 mol m−2 s−1 and photosynthetic CO2 assimilation increased 8-fold for A. tridentata and 6-fold for P. tridentata. Water potential and photosynthetic gas exchange were maximal for both species 2–3 days following a pulse addition. In comparison to P. tridentata, the increase in photosynthesis for A. tridentata was more pronounced for plants treated incrementally with several small pulses compared to plants treated with one pulse of an equivalent total volume. The results indicate that both species can respond to a range of summer rainfall pulse magnitudes within about 2 days, with A. tridentata generally exhibiting larger responses in comparison to the co-dominant shrub species P. tridentata, which at this study site does indeed have shallow roots. In a future climate, the timing and magnitude of summer rainfall pulses will determine the extent to which these two species undergo changes in water status and photosynthetic carbon uptake, with implications for their fitness.  相似文献   

4.
Prolonged use of broad-spectrum antibiotics has led to the emergence of drug-resistant pathogens, both in medicine and in agriculture. New threats such as biological warfare have increased the need for novel and efficacious antimicrobial agents. Natural habitats not previously examined as sources of novel antibiotic-producing microorganisms still exist. One such habitat is the rhizosphere of desert shrubs. Here, we show that one desert shrub habitat, the rhizosphere of desert big sagebrush (Artemisia tridentata) is a source of actinomycetes capable of producing an extensive array of antifungal metabolites. Culturable microbial populations from both the sagebrush rhizosphere and nearby bulk soils from three different sites were enumerated and compared, using traditional plate-count techniques and antibiotic activity bioassays. There were no statistical differences between the relative numbers of culturable non-actinomycete eubacteria, actinomycetes and fungi in the rhizosphere versus bulk soils, but PCR amplification of the 16S rRNA gene sequences of the total soil DNA and denaturing gradient gel electrophoresis showed that the community structure was different between the rhizosphere and the bulk soils. A high percentage of actinomycetes produced antimicrobials; and the percentage of active producers was significantly higher among the rhizosphere isolates, as compared with the bulk soil isolates. Also, the rhizosphere strains were more active in the production of antifungal compounds than antibacterial compounds. 16S rRNA gene sequence analysis showed that sagebrush rhizospheres contained a variety of Streptomyces species possessing broad spectrum antifungal activity. Scanning electron microscopy studies of sagebrush root colonization by one of the novel sagebrush rhizosphere isolates, Streptomyces sp. strain RG, showed that it aggressively colonized young sagebrush roots, whereas another plant rhizosphere-colonizing strain, S. lydicus WYEC108, not originally isolated from sagebrush, was a poor colonizer of the roots of this plant, as were two other Streptomyces isolates from forest soil. These results support the hypothesis that the rhizosphere of desert big sagebrush is a promising source of habitat-adapted actinomycetes, producing antifungal antibiotics.  相似文献   

5.
Allozyme spectra of peroxidase, esterase, superoxid dismutase, tyrosinase, alcohol dehydrogenase, lactate dehydrogenase, and acid phosphatase were examined in populations of sexual (Taraxacum serotinum and Pilosella echioides) and apomictic (T. officinale and P. officinarum) plant species. The heterozygosity in these populations (0.455–0.620) proved to be considerably higher than the average level characteristic of plant populations (0.058–0.185). The populations examined did not differ in the mean phenotype number , i.e., they exhibited the same diversity (3.188–3.380). The proportion of rare phenotypes h also did not differ between the sexual and apomictic species of the same genus, whereas this parameter in the Pilosella populations (0.150–0.174) was significantly higher than in the Taraxacum ones (0.093–0.114). The populations were characterized by numerous isozyme spectra (more than 11 per populations) and displayed multiple allelism (the mean allele frequency was 3.63–4.38 per locus). They exhibited a high percentage of rare (occurring at a frequency lower than 5%) spectra (35–80%). This indicates that agamic complexes, to which these populations belong, may have a more complicated genetic structure of both apomictic and sexual populations than the species that do not belong to agamic complexes.Translated from Genetika, Vol. 41, No. 2, 2005, pp. 203–215.Original Russian Text Copyright © 2005 by Kashin, Anfalov, Demochko.  相似文献   

6.
We investigated seasonal variations in allelopathic potential ofArtemisia princeps var.orientalis. Aqueous and meth-anol extracts and volatile substances were prepared in the laboratory from samples collected monthly (April through October). Their impacts were then assessed on the germination and seedling growth ofLactuca sativa andAchyranthes japonica. The allelopathic potential varied with the time of sample collection and the concentration tested. For example, germination ofL. sativa was not inhibited by the aqueous extract but seedling growth (shoots and roots) was, with its seasonal effect being significant. ForA. japonica, seed germination was not inhibited at lower concentrations (except for August samples). However, at higher concentrations and in certain months (especially July), germination was more negatively affected. The degree of seedling growth inhibition also differed by month and by extract concentration, with roots being impacted more than shoots. Volatile substances also had a time-dependent influence on the germination and seedling elongation ofA. japonica. In a separate experiment, the ethyl-acetate and water fractions of a crude methanol extract were prepared monthly fromA. princeps var.orientalis. Here, we examined their antimicrobial activities against three gram-positive bacteria (Bacillus cereus, Bacillus subtilis, andStaphylococcus aureus), two gramnegative bacteria (Escherichia coli andPseudomonas fluorescens), and one lactic acid bacterium,Lactobacillus plantar urn. The ethyl-acetate fraction that was sampled in September was remarkably potent againstB. cereus andB. subtilis, whereas the water fraction collected in August and September showed great antimicrobial activity against the grampositive and -negative bacteria. In contrast,L. plantarum was not inhibited by the water fraction, regardless of the sampling month. Likewise, the ethyl-acetate and water fractions collected in April and October had the lowest levels of antimicrobial activity.  相似文献   

7.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora: Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii , Rumex densiflorus var. pycnanthus , R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage.  相似文献   

8.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

9.
Resources in the Great Basin of western North America often occur in pulses, and plant species must rapidly respond to temporary increases in water and nutrients during the growing season. A field study was conducted to evaluate below ground responses of Artemisia tridentata and Agropyron desertorum, common Great Basin shrub and grass species, respectively, to simulated 5-mm (typical summer rain) and 15-mm (large summer rain) summer rainfall events. The simulated rainfall was labeled with K(15)NO(3) so that timing of plant nitrogen uptake could be monitored. In addition, soil NH(4)(+) and NO(3)(-) concentrations and physiological uptake capacities for NO(3)(-) and NH(4)(+) were determined before and after the rainfall events. Root growth in the top 15 cm of soil was monitored using a minirhizotron system. Surprisingly, there was no difference in the amount of labeled N acquired in response to the two rainfall amounts by either species during the 7-day sample period. However, there were differences between species in the timing of labeled N uptake. The N label was detected in above ground tissue of Agropyron within 1 h of the simulated rainfall events, but not until 24 h after the rainfall in Artemisia. For both Agropyron and Artemisia, root uptake capacity was similarly affected by the 5-mm and 15-mm rainfall. There was, however, a greater increase in uptake capacity for NH(4)(+) than for NO(3)(-), and the 15-mm event resulted in a longer response. No root growth occurred in either species in response to either rainfall event during this 8-day period. The results of this study indicate that these species are capable of utilizing nitrogen pulses following even small summer rainfall events during the most stressful period of the summer and further emphasize the importance of small precipitation events in arid systems.  相似文献   

10.
Hayes CN  Winsor JA  Stephenson AG 《Oecologia》2004,140(4):601-608
In a series of field experiments Diabrotica beetle herbivory was found to influence the magnitude of inbreeding depression in Cucurbita pepo ssp. texana, an annual monoecious vine. Beetles damage flowers and fruits and chew dime-sized holes in leaf tissue between major veins. Inbred plants were found to be more likely to be damaged by beetles and to have more leaves damaged per plant than outcrossed plants. A positive linear association was found between the coefficient of inbreeding and the magnitude of leaf damage, whereas a negative association was found between coefficient of inbreeding and several male and female fitness traits. When pesticides were used to control beetle herbivory, the interaction between coefficient of inbreeding and pesticide treatment was significant for fruit production and marginally significant for pollen quantity per anther. Therefore, the magnitude of inbreeding depression in C. pepo ssp . texana varies depending on the severity of beetle herbivory.  相似文献   

11.
12.
Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.  相似文献   

13.
Single (unpaired) vegetative cells of freshwater pennate diatom Neidium cf. ampliatum differentiated into gametangia and produced a single zygote (auxospore) via a pedogamic process. The gametic nuclei fused after auxospore expansion had begun. The auxospore expanded in parallel to the apical axis of the gametangium.  相似文献   

14.

Background  

DIPLOSPOROUS (DIP) is the locus for diplospory in Taraxacum, associated to unreduced female gamete formation in apomicts. Apomicts reproduce clonally through seeds, including apomeiosis, parthenogenesis, and autonomous or pseudogamous endosperm formation. In Taraxacum, diplospory results in first division restitution (FDR) nuclei, and inherits as a dominant, monogenic trait, independent from the other apomixis elements. A preliminary genetic linkage map indicated that the DIP-locus lacks suppression of recombination, which is unique among all other map-based cloning efforts of apomeiosis to date. FDR as well as apomixis as a whole are of interest in plant breeding, allowing for polyploidization and fixation of hybrid vigor, respectively. No dominant FDR or apomixis genes have yet been isolated. Here, we zoom-in to the DIP-locus by largely extending our initial mapping population, and by analyzing (local) suppression of recombination and allele sequence divergence (ASD).  相似文献   

15.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

16.

Background

Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio).

Results

We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh 3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish.

Conclusions

The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
  相似文献   

17.
Water conservation is important for plants that maintain physiologically active foliage during prolonged periods of drought. A variety of mechanisms for water conservation exist including stomatal regulation, foliage loss, above- and below-ground allocation patterns, size of xylem vessels and leaf pubescence. Using the results of a field and simulation study with Artemisia tridentata in the Great Basin, USA, we propose an additional mechanism of water conservation that can be used by plants in arid and semi-arid environments following pulses of water availability. Precipitation redistributed more uniformly in the soil column by roots (hydraulic redistribution of water downward) slows the rate at which this water can subsequently be taken up by plants, thus prolonging water availability during periods of drought. By spreading out water more uniformly in the soil column at lower water potentials following precipitation events, water use is reduced due to lower soil conductivity. The greater remaining soil water and more uniform distribution result in higher plant predawn water potentials and transpiration rates later in the drought period. Simulation results indicate that plants can benefit during drought periods from water storage following both summer rain events (small summer pulses) and overwinter recharge (large spring pulse). This mechanism of water conservation may aid in sustaining active foliage, maintaining root-soil hydraulic connectivity, and increasing survival probability of plants which remain physiologically active during periods of drought.  相似文献   

18.
Reinforcement is the process by which selection favors traits that decrease mating between two incipient species in response to costly mating or the production of maladapted hybrids, causing the evolution of greater reproductive isolation between emerging species. I have studied a pair of orchids, Neotinea tridentata and N. ustulata, to examine the level of postmating pre- and post-zygotic isolating mechanisms that maintain these species, and the degree to which the boundary may still be permeable to gene flow. In this study, I performed pollen tube growth rate experiments and I investigated pre- and post-zygotic barriers by performing hand pollination experiments in order to evaluate fruit set, embryonate seed set and seed germination rates by intra- and interspecific crosses. Fruit set, the percentage of embryonate seeds and germinability of interspecific crosses were reduced compared to intraspecific pollinations, showing significant differences between sympatric and allopatric populations. While in allopatric populations the post-pollination isolation index ranged between 0.40 and 0.11, in sympatric populations orchid pairs showed total isolation due to post-pollination prezygotic barriers, guaranteed at the level of pollen–stigma interactions. Indeed, in sympatric populations, pollen tubes reached the ovary after 24 h in only 8 out of 45 plants; in the remaining cases, the pollen tubes did not enter the ovary, and thus no fruit set occurred. This pair of orchids is characterized by postmating pre-zygotic reproductive isolation in sympatric populations that prevents the formation of hybrids. This mechanism of speciation, starting in allopatry and triggering the reinforcement mechanisms of reproductive isolation in secondary sympatry, is the most likely explanation for the pattern of evolutionary transitions found in this pair of orchids.  相似文献   

19.
Four species of western US Osmia (3 Cephalosmia) that are Asteraceae specialists (mesoleges) were observed using a stereotypical means of collecting pollen—abdominal drumming—to gather pollen from 21 flowering species representing nine tribes of Asteraceae. Abdominal drumming is a rapid dorso-ventral motion of the female’s abdomen (467 pats/min) used to directly collect and place pollen in the bee’s ventral scopa. A co-occurring generalist, O. lignaria, never drummed Asteraceae flowers for pollen, but instead used its legs to harvest pollen. Observed drumming by several other osmiines is noted. A different pollen-harvesting behavior, abdominal tapping, is described for two eucerine bees (Melissodes agilis and Svastra obliqua), both oligolectic for the Asteraceae. The behavior also involves a dorso-ventral motion, but they tap their distal abdominal venter against disk flowers at a slower tempo (304 taps/min). These females’ distal sternites have distinctly dense and long hair brushes for acquiring pollen by this behavior. Brief accounts of similar abdominal pollen gathering behaviors by other megachilids are summarized.  相似文献   

20.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号