首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dinucleoside bearing an amide internucleotide C3′-CH2-C(O)-NH-C5′ bond was synthesized by the interaction of 3′-deoxy-3′-carboxylmethylribothymidine-2′,3′-lactone obtained by hydrolysis of 2′-O-acetyl-5′-O-benzoyl-3′-deoxy-3′-ethoxycarboxylmethylribothymidine with 5′-deoxy-5′-amino-3′-O-(tert-butyldimethylsilyl)thymidine. After standard manipulations with protective groups, the dinucleoside was converted into 3′-O-(2-cyanoethyl-N,N′-diisopropylphosphoroamidite), which was used for the synthesis of modified oligonucleotides on an automatic synthesizer. Duplex melting curves formed by modified and complementary natural oligonucleotides were measured and the melting temperatures and thermodynamic parameters of duplex formation were calculated. The introduction of one modified bond into oligonucleotides caused only an insignificant decrease in the duplex melting temperatures compared with the nonmodified ones.  相似文献   

2.
Epothilone A is a derivative of 16-membered polyketide natural product, which has comparable chemotherapeutic effect like taxol. Introduction of sialic acids to these chemotherapeutic agents could generate interesting therapeutic glycoconjugates with significant effects in clinical studies. Since, most of the organisms biosynthesize sialic acids in their cell surface, they are key mediators in cellular events (cell-cell recognition, cell-matrix interactions). Interaction between such therapeutic sugar parts and cellular polysaccharides could generate interesting result in drugs like epothilone A. Based on this hypothesis, epothilone A glucoside (epothilone A 6-O-β-D-glucoside) was further decorated by conjugating enzymatically galactose followed by sialic acids to generate epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactoside i.e., lactosyl epothilone A (lac epoA) and two sialosides of epothilone A namely epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 3″-O-α-N-acetyl neuraminic acid and epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 6″-O-α-N-acetylneuraminic acid i.e., 3′sialyllactosyl epothilone A: 3′SL-epoA, and 6′sialyllactosyl epothilone A: 6′SL-epoA, respectively. These synthesized analogs were spectroscopically analyzed and elucidated, and biologically validated using HUVEC and HCT116 cancer cell lines.  相似文献   

3.
Saposhnikovia divaricata (Turcz.) Schischk is a traditional herb of East Asia. Bioactive chromones and volatile components in its roots are known to exhibit pharmacological functions. However, limited information is available on the drought resistance of this herb. In this study, potted Saposhnikovia divaricata seedlings were subjected to a progressive drought stress of 20 days by withholding water followed by twice rehydration, which resulted in some physiological, biochemical and secondary metabolite responses as well as drought acclimatization. A decline in leaf water content but increase in electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione (GSH), proline, soluble sugar, prim-O-glucosylcimifugin and 4′-O-β-d-glucosyl-5-O-methylvisamminol content was observed. After rehydration, some of the indices recovered except proline, soluble sugar, prim-O-glucosylcimifugin and 4′-O-β-d-glucosyl-5-O-methylvisamminol content. Moreover, mild (day 8), moderate (days 12–16) and severe (day 20) drought phases were identified. A total of 18 volatile components were identified by GC–MS under different drought phases, of which aromatic alcohols (42.02%) and sesquiterpenes (37.35%) were the major components. The characteristic component named falcarinol was decreased by severe drought stress. This study demonstrated that Saposhnikovia divaricata had strong drought acclimatization, and resisted drought by activating the antioxidant system and accumulating osmolytes. In addition, moderate and severe drought stress promoted bioactive secondary metabolites prim-O-glucosylcimifugin and 4′-O-β-d-glucosyl-5-O-methylvisamminol accumulation. Severe drought stress reduced falcarinol relative content, which provided an insight for improving the quantity of Saposhnikovia divaricata bioactive components.  相似文献   

4.
Two new steroid glycosides were isolated from the Far East starfish Hippasteria kurilensis collected in the Sea of Okhotsk. They were characterized as (22E,24R)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-[2-O-methyl-β-D-xylopyranosyl-(1→5)-α-L-arabinofuranosyl]-5α-cholest-22-ene-3β,4β,6α,7α,8,15β,24-heptaol (kurilensoside I) and (24S)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-(α-L-arabinofuranosyl)-5α-cholestane-3β,4β,6β,15α,24-pentaol (kurilensoside J). In addition, the earlier known glycosides linkosides F and L1, leviusculoside G, forbeside L, desulfated echinasteroside, and granulatoside A were isolated and identified. The structures of the new compounds were established with the help of two-dimentional NMR spectroscopy and mass- spectrometry.  相似文献   

5.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

6.
5′-Pyrenylmethylphosphamide and 5′-bispyrenylmethylphosphordiamide derivatives of oligo(2′-O-methylribonucleotides) and their analogues with thymidine attached at their 3′-termini by a 3′-3′-phosphodiester internucleotide bond (“inverted” thymidine) were synthesized. The effect of the pyrene residue(s) on the thermal stability of duplexes of the modified oligonucleotides with RNA and DNA was studied. A possibility of detection of hybridization of 5′-mono- and 5′-bispyrenyl derivatives with RNA and DNA targets in solution was demonstrated according to the changes in fluorescence. 5′-Pyrenylphosphamide derivatives of oligo(2′-O-methylribonucleotides) and their inverted analogues were shown to be used as sensitive probes for the detection of single nucleotide polymorphisms in RNA and DNA by the method of thermal duplex denaturation with fluorescence change registration.  相似文献   

7.
Chemical investigation of the freshwater microalga Chlorella sorokiniana led to the isolation of a monogalactosyldiacylglycerol (MGDG)-rich fraction possessing dose-dependent inhibitory activity against pancreatic lipase activity. The MGDG-rich fraction contains 12 MGDGs identified by LC/HRMS analysis. Among them, three MGDGs were new compounds, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-2-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-β-D-galactopyranosylglycerol (1), (2S)-1-O-linoleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (6), and (2S)-1-O-oleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (8). The major galactolipids were isolated by semipreparative HPLC and tested for their effect toward pancreatic lipase inhibitory activity. All the tested MGDGs showed significant reduction of pancreatic lipase activity indicating possible beneficial use for management of lipase-related disorders such as obesity.  相似文献   

8.
The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.  相似文献   

9.
Bicyclic furano[2,3-d]pyrimidine ribonucleosides were synthesized by Pd(0)-and CuI-catalyzed coupling of 5-iodouridine with terminal alkynes. The treatment of the resulting nucleosides with ammonia or methylamine solution in aqueous alcohol resulted in pyrrolo-and N 7-methylpyrrolo[2,3-d]pyrimidine nucleosides. 5′-O-Triphosphates of bicyclic nucleosides were obtained by the treatment of the nucleosides with POCl3 in the presence of a “proton sponge.” The 5′-O-triphosphates are not substrates for HCV RNA-dependent RNA polymerase, but are effective substrates for HCV RNA helicase/NTPase and did not inhibit ATP hydrolysis. Only 3-(β-D-ribofuranosyl)-6-decyl-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one showed a moderate anti-HCV activity in the HCV replicon system and efficiently inhibited replication of bovine viral diarrhea virus (BVDV) in KCT-cells, other compounds being inactive. None of the compounds were cytotoxic within the tested range of concentrations.  相似文献   

10.
Three new steroid glycosides (evasteriosides C, D, and E) along with six known compounds were isolated from two Pacific starfish of the genus Evasterias. Evasterioside C from E. retiferacollected from the Sea of Japan was identified as (20R, 22E)-3-O-(β-D-xylopyranosyl)-24-nor-5α-cholest-22-ene-3β,6β,15α,26-pentaol 26-sulfate sodium salt. The structures of evasteriosides D and E from E. echinosoma (collected from the Gulf of Shelichov, the Sea of Okhotsk) were established as (20R, 24S)-24-O-(β-D-glucopyranosyl)-5α-cholestane-3β,6α,8,15β,24-pentaol and (20R,24S)-3,24-di-O-(β-D-xylopyranosyl)-cholest-4-ene-3β,6β,8,15α,24-pentaol, respectively. In addition, the known compounds pycnopodiosides A and C, luridoside A, 5α-cholestane-3β,6α,8,15β,16β,26-hexaol. 5α-Cholestane-3β,6α,8,15β,24-pentaol 24-sulfate sodium saltand marthasterone sulfate sodium salt were identified in E. echinosoma. The structures of the isolated compounds were established on the basis of spectroscopic analyses, using 1D and 2D NMR techniques, mass spectrometry, and some chemical transformations.  相似文献   

11.
3-Aminopropyl glycosides of α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, α-D-mannopyranosyl-(1→3)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, and α-D-mannopyranosyl-(1→2)-[α-D-mannopyranosyl-(1→3)]-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose were efficiently synthesized starting from ethyl 2-O-acetyl(benzoyl)-3,4,6-tri-O-benzyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2-O-benzoyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2,3-di-O-benzoyl-1-thio-α-D-mannopyranoside, and 2,3,4,6-tetra-O-benzoyl-α-D-mannopyranosyl bromide. The oligosaccharide chains synthesized correspond to the three structural types of side chains of mannan from Candida albicans cell wall. A conjugate of the third pentasaccharide with bovine serum albumin was prepared using the squarate method.  相似文献   

12.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

13.
14.

Main conclusion

Paper-bagging treatment can transform non-transcribed MdMYB1 - 2 and MdMYB1 - 3 alleles into transcribed alleles through epigenetic regulations, resulting in the red pigmentation of a normally non-red apple cultivar ‘Mutsu.’ Anthocyanin biosynthesis in apples is regulated by MdMYB1/A/10, an R2R3-Type MYB gene. ‘Mutsu,’ a triploid apple cultivar harboring non-transcribed MdMYB1-2 and MdMYB1-3 alleles, retains green skin color under field conditions. However, it can show red/pink pigmentation under natural or artificial ultraviolet-B (UV-B) light exposure after paper-bagging and bag removal treatment. In the present study, we found that in ‘Mutsu,’ paper bagging-induced red pigmentation was due to the activation of non-transcribed MdMYB1-2/-3 alleles, which triggered the expression of downstream anthocyanin biosynthesis genes in a UV-B-dependent manner. By monitoring the epigenetic changes during UV-B-induced pigmentation, no significant differences in DNA methylation and histone modifications in the 5′ upstream region of MdMYB1-2/-3 were recorded between the UV-B-treated fruit skin (red) and the fruit skin treated only by white light (green). In contrast, bag treatment lowered the DNA methylation in this region of MdMYB1-2/-3 alleles. Similarly, higher levels of histone H3 acetylation and trimethylation of H3 tail at lysine 4, and lower level of trimethylation of H3 tail at lysine 27 were observed in the 5′ upstream region of MdMYB1-2/-3 in the skin of the fruit immediately after bag removal. These results suggest that bagging treatment can induce epigenetic changes, facilitating the binding of trans factor(s) to MdMYB1-2/-3 alleles, resulting in the activation of these MYBs after bag removal.
  相似文献   

15.

Introduction

Oxygen from carbon dioxide, water or molecular oxygen, depending on the responsible enzyme, can lead to a large variety of metabolites through chemical modification.

Objectives

Pathway-specific labeling using isotopic molecular oxygen (18O2) makes it possible to determine the origin of oxygen atoms in metabolites and the presence of biosynthetic enzymes (e.g., oxygenases). In this study, we established the basis of 18O2-metabolome analysis.

Methods

18O2 labeled whole Medicago truncatula seedlings were prepared using 18O2-air and an economical sealed-glass bottle system. Metabolites were analyzed using high-accuracy and high-resolution mass spectrometry. Identification of the metabolite was confirmed by NMR following UHPLC–solid-phase extraction (SPE).

Results

A total of 511 peaks labeled by 18O2 from shoot and 343 peaks from root were annotated by untargeted metabolome analysis. Additionally, we identified a new flavonoid, apigenin 4′-O-[2′-O-coumaroyl-glucuronopyranosyl-(1–2)-O-glucuronopyranoside], that was labeled by 18O2. To the best of our knowledge, this is the first report of apigenin 4′-glucuronide in M. truncatula. Using MSn analysis, we estimated that 18O atoms were specifically incorporated in apigenin, the coumaroyl group, and glucuronic acid. For apigenin, an 18O atom was incorporated in the 4′-hydroxy group. Thus, non-specific incorporation of an 18O atom by recycling during one month of labeling is unlikely compared with the more specific oxygenase-catalyzing reaction.

Conclusion

Our finding indicated that 18O2 labeling was effective not only for the mining of unknown metabolites which were biosynthesized by oxygenase-related pathway but also for the identification of metabolites whose oxygen atoms were derived from oxygenase activity.
  相似文献   

16.
3-Aminopropyl glycoside of 3,2′-di-O-α-L-fucosyl-N-acetyllactosamine (Ley tetrasaccharide) was synthesized. The glycosyl donor, 2-O-acetyl-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl bromide, was coupled with glycosyl acceptor, 1,6-anhydro-2-acetamido-2-deoxy-β-D-glucopyranose or its 3-O-acetyl derivative, to give the corresponding N-acetyllactosamine derivatives in 20 and 71% yields, respectively. The glycosyl donor was synthesized from 1,2-di-O-acetyl-3,4,6-triO-benzoyl-D-galactopyranose, which was obtained by the treatment of benzobromogalactose with sodium borohydride to yield 1,2-O-benzylidene derivative and subsequent removal of benzylidene group and acetylation. Acidic methanolysis of the disaccharide derivatives resulted in the selective removal of one or both acetyl groups to give the disaccharide acceptor bearing hydroxy groups at C3 of the glucosamine residue and C2 of the galactose residue. The introduction of fucose residues in these positions by the treatment with tetrabenzylfucopyranosyl bromide resulted in a tetrasaccharide derivative, which was converted into 3,2′-di-O-α-L-fucopuranosyl-1,6-anhydro-N-acetyllactosamine peracetate after substitution of acetyl groups for benzoyl and benzyl groups. Opening of the anhydro ring by acetolysis resulted in peracetate, which was then converted into the corresponding oxazoline derivative by two steps. Glycosydation of the oxazoline derivative with 3-trifluoroacetamidopropan-1-ol and removal of O-acetyl and N-trifluoroacetyl protective groups resulted in a free spacered Ley tetrasaccharide.  相似文献   

17.
A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6′-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8′-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane, and 1,3-dihydroxyphenyl-5-cis-10′-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1–6 and led to the synthesis of an additional product, which was identified as 5-(8′Z,11′Z-heptadecadienyl) resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium.  相似文献   

18.

Key message

A novel TaGW2-A1 allele was identified from a stable, robust QTL region, which is pleiotropic for thousand grain weight, grain number per spike, and grain morphometric parameters in wheat.

Abstract

Thousand grain weight (TGW) and grain number per spike (GNS) are two crucial determinants of wheat spike yield, and genetic dissection of their relationships can help to fine-tune these two components and maximize grain yield. By evaluating 191 recombinant inbred lines in 11 field trials, we identified five genomic regions on chromosomes 1B, 3A, 3B, 5B, or 7A that solely influenced either TGW or GNS, and a further region on chromosome 6A that concurrently affected TGW and GNS. The QTL of interest on chromosome 6A, which was flanked by wsnp_BE490604A_Ta_2_1 and wsnp_RFL_Contig1340_448996 and designated as QTgw/Gns.cau-6A, was finely mapped to a genetic interval shorter than 0.538 cM using near isogenic lines (NILs). The elite NILs of QTgw/Gns.cau-6A increased TGW by 8.33%, but decreased GNS by 3.05% in six field trials. Grain Weight 2 (TaGW2-A1), a well-characterized gene that negatively regulates TGW and grain width in wheat, was located within the finely mapped interval of QTgw/Gns.cau-6A. A novel and rare TaGW2-A1 allele with a 114-bp deletion in the 5′ flanking region was identified in the parent with higher TGW, and it reduced TaGW2-A1 promoter activity and expression. In conclusion, these results expand our knowledge of the genetic and molecular basis of TGW-GNS trade-offs in wheat. The QTLs and the novel TaGW2-A1 allele are likely useful for the development of cultivars with higher TGW and/or higher GNS.
  相似文献   

19.
The preparative method for the synthesis of 2-fluoroadenosine starting from commercially available guanosine was developed. It included the intermediate formation of 2-amino-6-azido-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine, which was isolated exclusively in the tetrazolo[5,1-i]-form {5-amino-7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-7H -tetrazolo[5,1-i]purine}. The latter compound was converted by the Schiemann reaction to 6-azido-2-fluoro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine, which was isolated at an 80% yield after careful optimization of the process. The IR and 1H NMR spectroscopy data indicated the 6-azido-2-fluoropurine structure of the aglycone. The catalytic reduction of the azido group in 6-azido-2-fluoro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine to the amino moiety and the subsequent deacetylation by the routine procedure resulted in 2-fluoroadenosine at a total yield of 74%.  相似文献   

20.
The effect of reactive oxygen and nitrogen species on lux-biosensors based on the Escherichia coli K12 MG1655 and Salmonella typhimurium LT2 host strains was investigated. The bioactivity of exogenous free radicals to the constitutively luminescent E. coli strain with plasmid pXen7 decreased in the order H2O2 > OCl > NO? > RОO? > ONOO> O2?- while the bioluminescence of S. typhimurium strain transformed with this plasmid decreased in the order NO? > H2O2 > ONOO > RОO? > OCl > O2?- The cross-reactivity of induced lux-biosensors to reactive oxygen and nitrogen species, the threshold sensitivity and the luminescence amplitude dependences from the plasmid specificity and the host strain were indicated. The biosensors with plasmid pSoxS′::lux possessed a wider range of sensitivity, including H2O2 and OCl, along with O2?- and NO?. Among the used reactive oxygen and nitrogen species, H2O2 showed the highest induction activity concerning to the plasmids pKatG′::lux, pSoxS′::lux and pRecA′::lux. The inducible lux-biosensors based on S. typhimurium host strain possessed a higher sensitivity to the reactive oxygen and nitrogen species in comparison with the E. coli lux-biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号