首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Whether or not species track native climatic conditions during invasions (i.e., climate match hypothesis) is fundamental to understand and prevent potential impacts of invasive species. Recent empirical work suggests that climatic mismatches between native and invasive ranges are pervasive. Whether these differences are due to adaptation to new climatic spaces in the invasive range or due to partial filling of the potential climatic space are still subject to debate. Here, we analyze climatic niche dynamics associated with the invasion of the two most common invasive plants in Brazilian semi-arid areas, Prosopis juliflora and Prosopis pallida. These species have been simultaneously introduced in the region, which creates a unique opportunity to compare their niche dynamics during invasion. Given that P. juliflora have a much wider native range size, we expect these species would present different dispersal potentials, which might translate into different unfilling levels. Using an ordination method with kernel smoother and null models, we contrasted climate spaces occupied by each species in both native and invasive ranges. We further used ecological niche models (ENMs) to compare reciprocal predictions of potentially suitable areas. Against our expectation based on differences in native range sizes, climatic niches of P. juliflora and P. pallida overlapped greatly, both in their native and invasive ranges. Our results support niche conservatism during the invasion process. Climatic mismatches among native and invaded ranges were exclusively attributed to unfilling of native climates in the invasive range. Both species showed similar unfilling levels. Likewise, ENMs predicted regions not yet occupied in the invasive range, revealing a potential for further expansion. We discuss colonization time lag and founder effect as potential mechanisms that may have prevented these species to fully occupy their native niches in the invasive range.  相似文献   

2.
The biotic resistance hypothesis predicts that more diverse communities should have greater resistance to invasions than species-poor communities. However for facultative and obligate epiphytic invaders a high native species richness, abundance and community complexity might provide more resources for the invader to thrive to. We conducted surveys across space and time to test for the influence of native algal species abundance and richness on the abundance of the invasive facultative epiphytic filamentous alga Lophocladia lallemandii in a Mediterranean Cystoseira balearica seaweed forest. By removing different functional groups of algae, we also tested whether these relationships were dependent on the complexity and abundance of the native algal community. When invasion was first detected, Lophocladia abundance was positively related to species richness, but the correlation became negative after two years of invasion. Similarly, a negative relationship was also observed across sites. The removal experiment revealed that more complex native communities were more heavily invaded, where also a positive relationship was found between native algal richness and Lophocladia, independently of the native algal abundance. Our observational and experimental data show that, at early stages of invasion, species-rich seaweed forests are not more resistant to invasion than species-poor communities. Higher richness of native algal species may increase resource availability (i.e. substrate) for invader establishment, thus facilitating invasion. After the initial invasion stage, native species richness decreases with time since invasion, suggesting negative impacts of invasive species on native biodiversity.  相似文献   

3.
Positive plant–soil feedback (PSF) may be a mechanism of invader dominance, whereas PSF is often negative for native species. Previous work in Eastern deciduous forests of North America has shown that the invasive liana Euonymus fortunei participates in a net positive PSF with native groundcover Asarum canadense, indicating that PSF may contribute to invader dominance. However, to identify PSF as a general invasion driver for Euonymus, we must consider the average net pairwise feedback for multiple native–invasive species pairs, and compare this to the average net pairwise feedback amongst native–native pairs. Here, we test E. fortunei in net pairwise feedback against five native species, comparing native–invader feedback to feedback amongst natives over a gradient of light availability. PSF was on average neutral for invader–native pairs and on average negative for native–native pairs, indicating that Euonymus does not face the same constraints that limit the growth of native species. Because even neutral feedback can facilitate invasion, results indicate that PSF may facilitate invader dominance over a broad range of native functional groups and light conditions in Eastern deciduous forest.  相似文献   

4.
Biological Invasions - The grey squirrel (Sciurus carolinensis) is an invasive rodent in Ireland that has had detrimental impacts on the native Irish red squirrel (S. vulgaris) as well as on...  相似文献   

5.
Plants are connected to habitats by functional traits which are filtered by environmental gradients. Since tree species composition in the forest canopy can influence ecosystem processes by changing resource availability, litter accumulation, and soil nutrient content, we hypothesised that non-native invasive trees can establish new environmental filters on the understorey communities. In the hardwood floodplain forests in Northern Italy, the invasive trees Robinia pseudoacacia L. and Prunus serotina Ehrh. are the dominant canopy species. We used trait data assembled from databases and iterative RLQ analysis to identify a parsimonious set of functional traits responding to environmental variables (soil, light availability, disturbance, and stand structure) and the dominant native and invasive canopy species. Then, RLQ and fourth-corner analysis was conducted to investigate the joint structure between macro-environmental variables and species traits and functional groups were identified. The trait composition of the herb-layer was significantly related to the main environmental gradients and the presence of the invaders in the canopy showed significant relationships with several traits. In particular, the presence of P. serotina may mitigate or even erase the effect of disturbances, maintaining a stable forest microclimate and thus favouring ‘true’ forest species, while R. pseudoacacia may slow down forest succession and regeneration by establishing new stable associations with a graminoid-dominated understorey. The impact of the two invasive trees on herb layer composition appears to differ, indicating that different management and control strategies may be needed.  相似文献   

6.
Soil-borne seed pathogens are omnipresent but are often overlooked components of a community’s biotic resistance to plant naturalization and invasion. Using multi-year greenhouse experiments, we compared the seed mortality of single invasive, naturalized, and native grass species in sterilized and unsterilized soils collected from Pacific Northwest (USA) steppe and forest communities. Native Pseudoroegneria spicata displayed the greatest seed mortality, naturalized Secale cereale displayed intermediate seed mortality, and invasive Bromus tectorum was least affected by soil pathogens. Seed mortality across all three species was consistently greater in soils collected from steppe than soils collected from forest; seeds sown into sterilized steppe soil experienced half the overall seed mortality compared to seeds sown into unsterilized steppe soil. Soil sterilization did not affect grass seed mortality in forest soils. We conclude that (1) removing soil-borne pathogens with sterilization does increase native and non-native grass seed survival, and (2) soil-borne pathogens may influence whether an introduced species becomes invasive or naturalized within these Pacific Northwest communities as a result of differential seed survival. Soil-borne pathogens in these communities, however, have the greatest negative effect on the survival of native grass seeds, suggesting that the native microbial soil flora more effectively attack seeds of native plants than seeds of non-native species.  相似文献   

7.
Identifying routes of invasion is a critical management strategy in controlling the spread of invasive species. This is challenging however in the absence of direct evidence. Therefore, indirect methodologies are used to infer possible invasion sources and routes, such as comparisons of genetic and morphological data from populations from invasive ranges and putative source areas. The greater white-toothed shrew (Crocidura russula) was first discovered in Ireland from skeletal remains in the pellets of birds of prey collected in 2007 and is it is now sufficiently established that the species has a detrimental impact on Ireland’s small mammal community. In this study, we address the uncertain origin(s) of the Irish population of C. russula. The cytochrome b gene of mitochondrial DNA was analysed from 143 individuals from throughout its range within a phylogenetic and approximate Bayesian computation framework. These analyses revealed that the Irish population stemmed from Europe as opposed to North Africa. Additionally, mandibles from 523 individuals from Ireland and 28 other European populations were subjected to multivariate and distance-based analyses, which demonstrated an association between the Irish population and those in France, Switzerland and Belgium. When the genetic and morphological analyses were considered together, an origin stemming from France was deemed the most likely scenario for the source of the invasive Irish population. This study has demonstrated the importance of utilising a multidisciplinary approach when attempting to identify the origins and invasion routes of invasive species.  相似文献   

8.
Changes in the composition of biological communities can be elicited by competitive exclusion, wherein a species is excluded from viable habitat by a superior competitor. Yet less is known about the role of environmental change in facilitating or mitigating exclusion in the context of invasive species. In these situations, decline in a native species can be due to the effects of habitat change, or due to direct effects from invasive species themselves. This is summarized by the “driver-passenger” concept of native species loss. We present a multi-year study of tree squirrels that tested the hypothesis that tree canopy fragmentation, often a result of human development, influenced the replacement of native western gray tree squirrels (Sciurus griseus) by non-native eastern gray tree squirrels (Sciurus carolinensis). We tested this hypothesis along a continuum of invasion across three study sites in central California. We found that within the developed areas of the University of California at Santa Cruz campus and city of Santa Cruz, S. carolinensis excluded S. griseus from viable habitat. The competitive advantage of S. carolinensis may be due to morphological and/or behavioral adaptation to terrestrial life in fragmented hardwood forests. We classify S. carolinensis as a “driver” of the decline of native S. griseus in areas with high tree canopy fragmentation. Future habitat fragmentation in western North America may result in similar invasion dynamics between these species. Our study warrants consideration of existing and predicted interactions between potentially invasive species that co-occur with native species where land use change is proposed.  相似文献   

9.
A new population of the invasive American Eastern grey squirrel (Sciurus carolinensis) has recently settled in central Italy from an accidental release in Perugia, Umbria in the early 2000s. The grey squirrel is known to compete with and exclude native red squirrels (S. vulgaris) in the British Isles and Northern Italy, so it represents a potentially important new conservation threat to the red squirrel subspecies of south and central Italy, S. vulgaris italicus and S. v. meridionalis, which are endemic to peninsular Italy. The grey squirrel population range in Perugia is currently expanding at a rate of about 0.29 km/year (SD 0.19), slower than grey squirrel invasions elsewhere in Europe. Nuclear DNA analysed at 12 different microsatellite loci revealed that the grey squirrels in Perugia have extremely low genetic diversity, consistent with a small founder size. Genetic assignment tests indicate that the Perugia population was founded by translocations from an established population in Piedmont, Italy. No genetic substructure is evident yet in the Perugia population. These results together have serious consequences for the management of the grey squirrel invasion in Perugia and the conservation of the red squirrel subspecies: the Perugia grey squirrel population should be eradicated if politically feasible; otherwise new releases of grey squirrels, especially from sources other than the Piedmont population, should be prevented because such introductions could increase genetic diversity, thereby potentially increasing population range expansion rate to the much higher levels seen for more diverse grey squirrel populations elsewhere in Europe.  相似文献   

10.
In Ireland, the UK and Italy, the invasive North American grey squirrel, Sciurus carolinensis, threatens the survival of the Eurasian red squirrel, Sciurus vulgaris, as the effects of competition and disease almost inevitably lead to total replacement of red squirrel populations. However the results of a recent national squirrel survey suggested that the normally invasive grey squirrel had gone into decline in the Irish midlands, which was anecdotally attributed to an increase in European pine marten, Martes martes, range and numbers. This study aimed to quantify changes in squirrel distribution in Ireland and to investigate the role, if any, of the pine marten in red and grey squirrel population dynamics. A distribution survey of the midlands was carried out which confirmed the grey squirrel population has crashed in approximately 9,000 km2 of its former range and the red squirrel is common after an absence of up to 30 years. At landscape level, pine marten and red squirrel abundance were positively correlated, whereas a strong negative correlation between pine marten and grey squirrel presence at woodland level was found to exist. Squirrel demographics were determined by means of live trapping programs which confirmed that the red squirrel in the midlands is now in competitive release and the grey squirrel is present at unusually low density. This study provides the first evidence of a regional grey squirrel population crash and suggests that European pine marten abundance may be a critical factor in the American grey squirrel’s success or failure as an invasive species.  相似文献   

11.
Native generalist herbivores might limit plant invasion by consuming invading plants or enhance plant invasion by selectively avoiding them. The role of herbivores in plant invasion has been investigated in relation to plant native/introduced status, however, a knowledge gap exists about whether food selection occurs according to native/introduced status or to species. We tested preference of the native herbivore white-tailed deer (Odocoileus virginianus) for widespread and frequently occurring invasive introduced and native plants in the northeastern United States. Multiple-choice deer preference trials were conducted for the species and relative preference was determined using biomass consumption and feeding behavior. While more native than introduced plant biomass was consumed overall, deer food selection varied strongly by plant species. Results show consistent deer avoidance of several invasive introduced plants (Alliaria petiolata, Berberis thunbergii, and Microstegium vimineum) and a native plant (Dennstaedtia punctilobula). Other invasive introduced plants (Celastrus orbiculatus, Ligustrum vulgare, and Lonicera morrowii) and a native plant (Acer rubrum) were highly preferred. These results provide evidence that herbivore impacts on plant invaders depend on plant species palatability. Consequently, herbivore selectivity likely plays an important role in the invasion process. To the extent that herbivory impacts population demographics, these results suggest that native generalist herbivores promote enemy release of some plant invaders by avoiding them and contribute to biotic resistance of others by consuming them.  相似文献   

12.
Introduced mammals can cause extinction of native species due to replacement competition, disease, predation or hybridization. We studied the colonization of Piedmont (NW-Italy) by American grey squirrel (Sciurus carolinensis) and its effect on the native red squirrel (Sciurus vulgaris). Presence/absence data (2 × 2 km2), of both species were (re)constructed using questionnaires, literature, existing databases, unpublished information, and direct monitoring with hair-tubes. In 1970 red squirrels were still widespread and greys were restricted to forests near the introduction site. By 1990, grey squirrels had increased their range to 220 km2, which coincided with the disappearance of native squirrels from 33 squares inside this range. The invasive species continued its spread occupying an area of 2,016 km2 in 2010; within this area red squirrels went extinct in 88 squares. Overall, from 1970 to 2010 red squirrel went extinct in 62 % of 2 × 2 km2 (ca. 1,689 km2), and were replaced by grey squirrels. The spread of the alien species was slow in the first 20 years, but doubled in the successive two decades. Nevertheless spread was slower than in Ireland and England. Grey squirrel adapt to climate and habitats in both North and South Europe, causing extinction of the native red squirrel. A EU LIFE co-funded project with the aim to control the grey squirrel in North Italy and recent trade-restrictions and trade-ban are a first step in reducing the risk of grey squirrels invading other countries, but their effectiveness will have to be evaluated.  相似文献   

13.
Invasion biology research, often performed by scientists at relatively small spatial scales, provides experimental precision but may be limited in generalizability. Conversely, large-scale invasive species management represents a largely untapped wealth of information on invasion ecology and management, but such data are difficult to capture and synthesize. We developed a network (“PhragNet”) of individuals managing wetlands occupied by native and non-native lineages of the invasive wetland grass Phragmites australis (common reed). This network collected environmental and genetic samples, habitat data, and management information to identify environmental and plant community associations of Phragmites invasion and patterns of management responses. Fifty managers overseeing 209 Phragmites stands in 16 US states and ON, Canada participated. Participants represented federal agencies (26%), municipalities (20%), NGOs (20%), academia (14%), state agencies (12%), and private landowners (8%). Relative to the native lineage, non-native Phragmites occurred in areas with higher nitrate/nitrite and ammonium than non-native Phragmites. Stand interiors had higher soil electrical conductivity than nearby uninvaded areas, consistent with use of road salt promoting spread of Phragmites. Non-native Phragmites co-occurred with fewer plant species than native Phragmites and was actively targeted for management. Herbicide was applied to 51% of non-native stands; surprisingly, 11% of native stands were also treated with herbicide. This project demonstrates the utility of crowdsourcing standardized data from resource managers. We conclude by describing how this approach could be expanded into an adaptive management framework, strengthening connections between wetland management and research.  相似文献   

14.
Inland aquatic ecosystems are vulnerable to both climate change and biological invasion at broad spatial scales. The aim of this study was to establish the current and future potential distribution of three invasive plant taxa, Egeria densa, Myriophyllum aquaticum and Ludwigia spp., in their native and exotic ranges. We used species distribution models (SDMs), with nine different algorithms and three global circulation models, and we restricted the suitability maps to cells containing aquatic ecosystems. The current bioclimatic range of the taxa was predicted to represent 6.6–12.3% of their suitable habitats at global scale, with a lot of variations between continents. In Europe and North America, their invasive ranges are predicted to increase up to two fold by 2070 with the highest gas emission scenario. Suitable new areas will mainly be located to the north of their current range. In other continents where they are exotic and in their native range (South America), the surface areas of suitable locations are predicted to decrease with climate change, especially for Ludwigia spp. in South America (down to ?55% by 2070 with RCP 8.5 scenario). This study allows to identify areas vulnerable to ongoing invasions by aquatic plant species and thus could help the prioritisation of monitoring and management, as well as contribute to the public awareness regarding biological invasions.  相似文献   

15.
The American bullfrog Lithobates catesbeianus is an invasive species that can strongly affect native amphibian communities through competition, predation, or introduction of diseases. This frog has invaded multiple areas in South America, for which niche models predict suitable environments across much of the continent. This paper reveals the state of the invasion of this species in Uruguay and its possible relationship with the chytrid pathogenic fungus, Batrachochytrium dendrobatidis. Surveys at invaded sites were conducted from 2007 to 2015, identified two populations undergoing recent range expansion (one of them exponential), two populations that failed to establish, and a new record in an urban area of the capital city, Montevideo. In all the analysed feral populations, chytridiomycosis was found. Our data suggest that the invasion of L. catesbeianus in Uruguay is at an early stage, with very localized populations, which might allow for the implementation of cost-effective management plans, with eradication constituting a plausible option.  相似文献   

16.
Pinus contorta, one of the most invasive tree species in the world, has been proposed as a model species for improving our understanding of invasion ecology. In this study, we assessed the impact of P. contorta invasions on the species richness, diversity and species traits of a resident treeless steppe community. In a Pinus contorta invasion gradient (Patagonia, Chile), we surveyed vegetation from high canopy closure pine invasion to treeless steppe, and computed species richness, diversity and Sørensen similarity indexes. For all species, we determined functional trait values from the literature, data bases, and personal observations. Species richness and diversity were related to canopy cover (a proxy for invasion intensity) using generalized linear mixed-effects models. Changes in species traits due to canopy cover were analyzed using RLQ ordination analysis and the fourth-corner analysis. We found that Pinus contorta canopy cover significantly reduced the number of native species by 70 %, implying a strong effect on species exclusion. A few native species, however, prevail in the novel conditions (e.g. Baccharis magellanica, Acaena integerrima). Species traits changed significantly with increasing pine canopy cover, where P. contorta promoted the existence of traits related to shade-tolerance and conservative reproductive strategies. We conclude that the negative impacts of Pinus contorta into the treeless steppe, including a reduction in the number of species and the shifting to traits adapted to tolerate shade and associated with conservative reproductive strategies, can have severe implications for the conservation of biodiversity and ecosystem functioning where it invades.  相似文献   

17.
The invasion of tilapia can result in substantial impacts on native communities. Thus, understanding the spatial dynamics of invasions may help prevent future introductions and mitigate impacts. This study estimated the environmentally suitable areas for occurrence of eight tilapia species (genera Coptodon, Oreochromis, Pelmatolapia, and Sarotherodon) in the Americas and their invasive potential using Ecological Niche Models (ENMs). The United States is the most invaded country, receiving all tilapia species. In South America, the southeast and south regions of Brazil are highlighted as the areas where two species are concentrated. The ENMs predicted that all tilapia species have high invasive potential in the Americas, and despite having more tilapias in North America, South and Central Americas are more susceptible to tilapia invasion. All South American basins were predicted to harbor tilapia species that have not yet arrived on the subcontinent. Our study evidences the need to implement management measures and governmental policies in the Americas to deal with problems caused by tilapia introductions. In North America, the focus is on the control of tilapia populations and in Central and South America priority should be given to contention of introduction processes.  相似文献   

18.
Mechanisms underlying biological invasion of highly disturbed ecosystems are well known, yet mechanisms responsible for biological invasion of undisturbed or weakly disturbed ecosystems are less understood. The triggering attribute (TA) approach, proposed as a mechanism that explains plant invasion success in undisturbed or weakly disturbed systems, considers that the spread of alien species depends on specific vegetative or regenerative traits in invasive species, discontinuously distributed in comparison to the resident community. In mountain Chaco woodland, fruiting phenology of ornithocorous invasive plants has been proposed as a TA, because it would allow invasive species to benefit from seed dispersal service, which is unused by native plants during a specific period of the year (winter). Under the seed dispersal ecology framework, we evaluated if fruiting phenology (fructification largely uncoupled with native species) of the fleshy-fruited invasive Pyracantha angustifolia affects bird fruit consumption, and allows the invasive to take advantage of the unused seed dispersal service during winter. If uncoupled fructification phenology represents a TA, seed disperser, seed predator, and pulp consumer diversity, abundance, and fruit consumption on P. angustifolia (which fructifies in winter), will be higher than on its exotic congeneric P. coccinea during summer, when fructification overlaps with native Celtis ehrenbergiana and many other native species. We found that: (1) disperser bird abundance and fruit consumption did not differ between P. angustifolia and P. coccinea; (2) the most diverse frugivorous assemblage was observed on C. ehrenbergiana, yet it had the lowest proportion of seed dispersers and the highest fruit consumption by seed predators and, (3) we also observed higher proportion of seed predators on P. angustifolia (uncoupled fructification scenario) than on P. coccinea (coupled fructification scenario). Our results suggest that invasive uncoupled fructification phenology does not represent a true TA which facilitates plant invasion processes in undisturbed or weakly disturbed ecosystem.  相似文献   

19.
In their first phase of expanding into new areas, invasive plants often take advantage of the inability of existing herbivores and pathogenic species to exploit them. However, in the longer term local enemies may adapt to using these invasive species as a food source. This study assesses the use of mature acorns of two oak species in Europe (the native Pedunculate Oak Quercus robur and the invasive Northern Red Oak Quercus rubra) by moths Cydia fagiglandana and Cydia splendana and beetles Curculio spp. We show that acorns of invasive oak species can be equally attractive to C. splendana but only partially so to C. fagiglandana where infestation rates where significantly lower (approximately half) compared to the native oak. The infestation by Curculio beetles of Northern Red Oak was marginal, less than 1% of the rate in the native oak species. The larval final weights did not differ significantly between host species, but emergence of C. splendana and Curculio spp. took significantly longer in acorns of Northern Red Oak. It is likely that C. fagiglandana and C. splendana have increased their niche breadths by exploiting invasive oak species and avoiding competition with the Curculio weevils. Furthermore, the occurrence of Northern Red Oak could stabilize food resources during years when native oak species have poor acorn crops.  相似文献   

20.
Invasive species are a regional and global threat to biological diversity. In order to evaluate an invasive predator species’ potential to harm populations of native prey species, it is critical to evaluate the behavioral responses of all life stages of the native prey species to the novel predator. The invasion of the African clawed frog (Xenopus laevis) into southern California provides an opportunity to evaluate the predation risk and behavioral responses of native amphibians. We performed predation trials and explored prey behavioral responses to determine how this invasive predator may impact native amphibian populations using Pacific chorus frogs (Pseudacris regilla) as a representative native California prey species. We found that X. laevis will readily prey upon larval and adult life stages of P. regilla. Behavior trials indicated that both larval and adult P. regilla exhibit prey response behaviors and will spatially avoid the novel invasive predator. The results suggest that native anurans may have a redundant predator response in both the larval and adult life stages, which could reduce the predatory impact of X. laevis but also drive emigration of native amphibians from invaded habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号