首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Phylogenetic analyses based on protein-encoding gene exons and introns of ATP citrate lyase (ACL1), beta tubulin (TUB), the largest subunit of RNA polymerase II (RPB1), and translation elongation factor 1-α (TEF1) are used for inferring the existence of a new Clonostachys species from the Cerrado biome in Brazil, described here as C. chloroleuca. The species produces dimorphic, primary, and secondary conidiophores that form consistently greenish conidial masses on artificial media. It resembles therefore C. rosea f. catenulata although it differs from this species by less adpressed branches in the secondary conidiophores. The new species is also phylogenetically related to C. byssicola and C. rhizophaga. Our inventory suggests that C. byssicola, C. chloroleuca, C. pseudochroleuca, C. rhizophaga, C. rogersoniana, and C. rosea commonly occur in native and agriculturally used soils of the Cerrado and Amazon Forest. Using sequences available from two genome-sequenced strains employed as biological control agents, we confirm the identity of the European strain IK726 as C. rosea and identify strain 67-1 from China as C. chloroleuca.  相似文献   

2.
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75–2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.  相似文献   

3.
Antibiotic-resistant bacteria have been observed with increasing frequency over the past decades, driving the search for new drugs and stimulating the interest in natural products sources. Endophytic fungi from medicinal plants represent a great source of novel bioactive compounds useful to pharmaceutical and agronomical purposes. Diaporthe terebinthifolii is an endophytic species isolated from Schinus terebinthifolius, a plant used in popular medicine for several health problems. The strain D. terebinthifolii LGMF907 was previously reported by our group to produce secondary metabolites with biological activity against phytopathogens. Based on these data, strain LGMF907 was chosen for bioprospecting against microorganisms of clinical importance and for characterization of major secondary metabolites. In this study, different culture conditions were evaluated and the biological activity of this strain was expanded. The crude extracts demonstrated high antibacterial activity against Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant S. aureus. The compounds diaporthin and orthosporin were characterized and also showed activity against the clinical microorganisms evaluated. This study discloses the first isolation of diaporthin and orthosporin from D. terebinthifolii, and revealed the potential of this endophytic fungus to produce secondary metabolites with antimicrobial activity.  相似文献   

4.
Economically feasible systems for heterologous production of complex secondary metabolites originating from difficult to cultivate species are in demand since Escherichia coli and Saccharomyces cerevisiae are not always suitable for expression of plant and animal genes. An emerging oilseed crop, Camelina sativa, has recently been engineered to produce novel oil profiles, jet fuel precursors, and small molecules of industrial interest. To establish C. sativa as a system for the production of medicinally relevant compounds, we introduced four genes from Veratrum californicum involved in steroid alkaloid biosynthesis. Together, these four genes produce verazine, the hypothesized precursor to cyclopamine, a medicinally relevant steroid alkaloid whose analogs are currently being tested for cancer therapy in clinical trials. The future supply of this potential cancer treatment is uncertain as V. californicum is slow-growing and not amendable to cultivation. Moreover, the complex stereochemistry of cyclopamine results in low-yield syntheses. Herein, we successfully engineered C. sativa to synthesize verazine, as well as other V. californicum secondary metabolites, in seed. In addition, we have clarified the stereochemistry of verazine and related V. californicum metabolites.  相似文献   

5.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

6.
7.
Trichoderma species are widely used in agriculture as biofungicides. These fungi are rich source of secondary metabolites and the mycoparasitic species are enriched in genes for biosynthesis of secondary metabolites. Most often, genes for secondary metabolism are clustered in fungal genomes. Previously, no systematic study was undertaken to identify the secondary-metabolism related gene clusters in Trichoderma genomes. In the present study, a survey of the three Trichoderma genomes viz. T. reesei, T. atroviride and T. virens, was made to identify the putative gene clusters associated with secondary metabolism. In T. reesei genome, we identified one new NRPS and 6 new PKS clusters, which is much less than that found in T. atroviride (4 and 8) and T. virens (8 and 7). This work would pave the way for discovery of novel secondary metabolites and pathways in Trichoderma.  相似文献   

8.
9.
The genus Diaporthe (asexual state: Phomopsis) comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Although species of Diaporthe have in the past chiefly been distinguished based on host association, studies have confirmed several taxa to have wide host ranges, suggesting that they move freely between hosts, frequently co-colonizing diseased or dead tissue, while some species are known to be host-specific. They are also very frequently isolated as endophytes of seed plants. Due to their importance as plant pathogens, the genus has been thoroughly investigated for secondary metabolites, including during screening programs aimed at the discovery of novel bioactive natural products, but the respective information has never been compiled. Therefore, we have examined the relevant literature to explore and highlight the major classes of metabolites of Diaporthe and their Phomopsis conidial states. These fungi predominantly produce a large number of polyketides, but cytochalasins and other types of commonly encountered fungal secondary metabolites are also predominant in some species. Interestingly, not a single metabolite which is also known from the host plant has ever been isolated as a major component from an endophytic Diaporthe strain, despite the fact that many of the recent studies were targeting endophytic fungi of medicinal plants.  相似文献   

10.
A steadily growing culture of genetically transformed roots of a valuable medicinal Altaic plant Hedysarum theinum Krasnob. was established using a Ri-plasmid (pRi) T-DNA of A4 wild strain of Agrobacterium rhizogenes. The composition of secondary substances accumulated in the in vitro roots and the roots of H. theinum intact seedlings was investigated. Isoflavonoids were found to represent by their main low-molecular metabolites. Preparative HPLC made it possible to isolate four substances from the methanolic extract of H. theinum cultured roots. Using 1H- and 13C-NMR-spectrometry, these substances were identified as formononetin, ononin (formononetin glycoside), malonyl ononin, and texasin glucoside. The qualitative composition of secondary metabolites of the genetically transformed roots and the roots of H. theinum seedlings was essentially the same, except that malonyl ononin was not found in the latter. The technique of producing artificial seeds on the basis of H. theinum roots cultured in vitro was tested, and the possibility of their use as a rhizogenic inoculum was substantiated. The culture of H. theinum roots is considered as a potential source of ecologically pure raw material for medicinal preparations, and the artificial seeds with root inoculum are a promising vehicle for propagation and conservation of this valuable plant.  相似文献   

11.
12.
Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.  相似文献   

13.
Ramularia is a species-rich genus in the order Capnodiales (Dothideomycetes, Ascomycota) that includes numerous phytopathogenic taxa, several of which are economically important plant pathogens. In this study, six isolates of Ramularia were recovered from leaf spot symptoms on six herbaceous and woody plants from Guilan, East and West Azarbaijan provinces in the north and northwest of Iran. The isolates were studied by a polyphasic approach involving morphological and cultural data, and multi-gene phylogeny (ITS, TEF1-α, ACT, HIS, RPB2 and GAPDH). The isolates were grouped in three species clades of the R. eucalypti species complex. Of these, R. mali is recorded for the first time in Asia and R. glennii represents a new record for the mycobiota of Iran. Ramularia taleshina on Alnus subcordata is described as a new species. Ramularia taleshina is phylogenetically related to R. mali, but they can be differentiated by morphological and cultural characters as well as molecular data. Acalypha australis, Ficus carica and Platanus sp. are reported as new hosts of R. glennii, and Prunus cerasus and Vitis vinifera as new hosts of R. mali.  相似文献   

14.
15.

Background and aims

We studied, through exudates employment, the effect of Epichloë (endophytic fungi), both independently and in association with Bromus auleticus (grass), on arbuscular mycorrhizal fungi (AMF) colonization, host and neighbouring plants biomass production and soil changes.

Methods

Through in vitro and greenhouse experiments, Epichloë endophytes effect on AMF development was evaluated. In vitro studies of exudates effect on Gigaspora rosea and Rhizophagus intraradices were performed using root or endophyte exudates. A 6-month greenhouse experiment was conducted to determine Bromus auleticus endophytic status effect and endophyte exudates role in biomass production, neighbouring plants mycorrhizal colonization and soil properties.

Results

Endophyte exudates and E+ plant root exudates promoted in vitro AMF development in the pre-infective stage of G. rosea and in carrot root culture mycelium of R. intraradices in a dose-response relationship, while control media and E- plants exudates had no effect. R. intraradices colonization and plant growth was clearly increased by endophytes and their exudates.

Conclusions

This is the first work evidencing the direct effect of Epichloë endophytes and infected plants root exudates on AMF extramatrical development. While higher levels of AMF colonization were observed in E+ plants, no clear effect was detected in neighbouring plants colonization, plant biomass or soil properties.
  相似文献   

16.
17.
Anthocyanins are secondary metabolites that play important roles in plant adaption to adverse environments. The anthocyanin biosynthetic pathway is conserved in high plants. Previous studies revealed the significant role of anthocyanins in natural-colorized cotton. However, little is known about the involvement of anthocyanins in the interaction of cotton and pathogen. In this study, a pathogen-induced gene was isolated from Gossypium barbadense that encodes an anthocyanidin synthase protein (GbANS) with dioxygenase structures. GbANS was preferentially expressed in colored tissue. Silencing of GbANS significantly reduced the production of anthocyanins, as well as the cotton’s resistance to Verticillium dahliae. Biochemical studies revealed that GbANS-silenced cotton accumulated more hydrogen peroxide compared to control plants during the V. dahliae invasion process. This accumulation of hydrogen peroxide corresponded with increased cell death around the invasion sites, which in turn accelerated the V. dahliae infection. Taken together, we found that GbANS contributes to the biosynthesis of anthocyanins in cotton and anthocyanins positively regulate cotton’s resistance to V. dahliae.  相似文献   

18.
19.
Scoparia dulcis of Scrophulariaceae is an annual herb distributed through out the tropics. Penicillium citrinum was obtained from apparently healthy roots, stem, leaves and fruits of this plant. Callus and multiple shoots produced during micropropagation from various explants were also symptomless but showed occurrence of Penicillium citrinum when cultured in Murashige & Skoog liquid medium for the production of secondary metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号