首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

2.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   

3.
Mitochondria mediate dual metabolic and Ca2+ shuttling activities. While the former is required for Ca2+ signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca2+ transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na+/Ca2+ exchanger that is linked to Ca2+ signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX) or of its activity, by a dominant negative construct (dnNCLX), enhanced mitochondrial Ca2+ influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca2+. Importantly, NCLX controlled the rate and amplitude of cytosolic Ca2+ changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca2+ signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na+/Ca2+ exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca2+ signals thereby regulating the temporal pattern of insulin secretion in β cells.  相似文献   

4.
Intracellular Ca2+ is vital for cell physiology. Disruption of Ca2+ homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca2+ dynamics, various Ca2+ transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca2+ transport mechanisms in responding to physiological Ca2+ pulses in cytosol is to take up Ca2+ for regulating energy production and shaping the amplitude and duration of Ca2+ transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca2+ approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca2+ transport across the inner mitochondrial membrane. The mitochondrial Ca2+ uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca2+ uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca2+ influx. Since multiple Ca2+ influx mechanisms (e.g. L-, T-, and N-type Ca2+ channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca2+ signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca2+ influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca2+/H+ exchanger), and MCU and its Ca2+ sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca2+ influx pathways and their differences in kinetics, Ca2+ dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.  相似文献   

5.
Ca2+ concentration in retinal photoreceptor rod outer segment (OS) strongly affects the generator potential kinetics and the receptor light adaptation. The response to intense light stimuli delivered in the dark produce potential changes exceeding 40 mV: since the Ca2+ extrusion in the OS is entirely controlled by the Na+:Ca2+, K+ exchanger, it is important to assess how the exchanger ion transport rate is affected by the voltage and, in general, by intracellular factors. It is indeed known that the cardiac Na+:Ca2+ exchanger is regulated by Mg-ATP via a still unknown metabolic pathway. In the present work, the Na+:Ca2+, K+ exchanger regulation was investigated in isolated OS, recorded in whole-cell configuration, using ionic conditions that activated maximally the exchanger in both forward and reverse mode. In all species examined (amphibia: Rana esculenta and Ambystoma mexicanum; reptilia: Gecko gecko), the forward (reverse) exchange current increased about linearly for negative (positive) voltages and exhibited outward (inward) rectification for positive (negative) voltages. Since hyperpolarisation increases Ca2+ extrusion rate, the recovery of the dark level of Ca2+ (and, in turn, of the generator potential) after intense light stimuli results accelerated. Mg-ATP increased the size of forward and reverse exchange current by a factor of ∼2.3 and ∼2.6, respectively, without modifying their voltage dependence. This indicates that Mg-ATP regulates the number of active exchanger sites and/or the exchanger turnover number, although via an unknown mechanism. Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.  相似文献   

6.
Mitochondria capture and subsequently release Ca2+ ions, thereby sensing and shaping cellular Ca2+ signals. The Ca2+ uniporter MCU mediates Ca2+ uptake, whereas NCLX (mitochondrial Na/Ca exchanger) and LETM1 (leucine zipper-EF-hand-containing transmembrane protein 1) were proposed to exchange Ca2+ against Na+ or H+, respectively. Here we study the role of these ion exchangers in mitochondrial Ca2+ extrusion and in Ca2+-metabolic coupling. Both NCLX and LETM1 proteins were expressed in HeLa cells mitochondria. The rate of mitochondrial Ca2+ efflux, measured with a genetically encoded indicator during agonist stimulations, increased with the amplitude of mitochondrial Ca2+ ([Ca2+]mt) elevations. NCLX overexpression enhanced the rates of Ca2+ efflux, whereas increasing LETM1 levels had no impact on Ca2+ extrusion. The fluorescence of the redox-sensitive probe roGFP increased during [Ca2+]mt elevations, indicating a net reduction of the matrix. This redox response was abolished by NCLX overexpression and restored by the Na+/Ca2+ exchanger inhibitor CGP37157. The [Ca2+]mt elevations were associated with increases in the autofluorescence of NAD(P)H, whose amplitude was strongly reduced by NCLX overexpression, an effect reverted by Na+/Ca2+ exchange inhibition. We conclude that NCLX, but not LETM1, mediates Ca2+ extrusion from mitochondria. By controlling the duration of matrix Ca2+ elevations, NCLX contributes to the regulation of NAD(P)H production and to the conversion of Ca2+ signals into redox changes.  相似文献   

7.
The effect of bile acids as inducers of Ca2+ efflux from the matrix was studied on isolated rat liver mitochondria. Mitochondria in the presence of cyclosporin A (CsA) were energized by succinate, then loaded with Ca2+ and after the addition of the calcium uniporter inhibitor ruthenium red were de-energized by malonate. It was shown that under these conditions hydrophobic bile acids lithocholic and chenodeoxycholic at concentrations of 10 and 30 μM respectively and hydrophilic bile acids ursodeoxycholic and cholic at a concentration of 400 μM induce Ca2+ efflux from the mitochondrial matrix. It is noted that the efflux of these ions is not associated with damage of the inner mitochondrial membrane by bile acids, since it is accompanied by the generation of Δψ, i.e., the formation of the diffusion potential. It is assumed that along with induction of calcium efflux from the matrix, bile acids are also capable of transporting hydrogen and potassium ions in the opposite direction, i.e., perform H+/Ca2+ and K+/Ca2+ exchange. It was found that ruthenium red added to Ca2+-loaded energized mitochondria prevents the return of these ions to the matrix and weakens the effect of chenodeoxycholic acid as an inducer of the CsA-sensitive mitochondrial pore and the effect of ursodeoxycholic acid as an inducer of CsA-insensitive permeability of the inner mitochondrial membrane. We conclude that in the conditions of the calcium uniporter activity decrease, Ca2+ efflux from the matrix induced by bile acids can be considered as one of the mechanisms reducing their effectiveness as inducers of the Ca2+-dependent CsA-sensitive pore and CsA-insensitive permeability transition in mitochondria.  相似文献   

8.
Roles of mitochondrial Na+-Ca2+ exchanger, NCLX, were studied in B lymphocytes such as heterozygous NCLX knockout DT40 cells, NCLX knockdown A20 cells, and native mouse spleen B lymphocytes treated with a NCLX blocker, CGP-37157. Cytosolic Ca2+ response to B cell receptor stimulation was impaired in these B lymphocytes, demonstrating importance of mitochondria-ER Ca2+ recycling via NCLX and sarco/endoplasmic reticulum Ca2+-ATPase SERCA, and interaction with store-operated Ca2+ entry. NCLX was also associated with motility and chemotaxis of B lymphocyte. Contrary to B lymphocytes, contribution of NCLX in mouse spleen T lymphocytes was minor.  相似文献   

9.
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca2+ results in the brief loss of Δψ [Mironova et al., J Bioenerg Biomembr (2004), 36:171–178]. Now we report that Pal and Ca2+, increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca2+ and the swelling of mitochondria. Inhibitors of the Ca2+ uniporter, ruthenium red and La3+, as well as EGTA added in 10 min after the Pal/Ca2+-activated pore opening, prevent the release of Ca2+ and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr2+], which leads to the activation of phospholipase A2 and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca2+ cycle, in which Ca2+ uptake is mediated by the Ca2+ uniporter and Ca2+ efflux occurs via a short-living Pal/Ca2+-activated pore.  相似文献   

10.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

11.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

12.
The membrane lipid environment and lipid signaling pathways are potentially involved in the modulation of the activity of the cardiac Na+-Ca2+ exchanger (NCX). In the present study biophysical mechanisms of interactions of amphiphiles with the NCX and the functional consequences were examined. For this purpose, intracellular Ca2+ concentration jumps were generated by laser-flash photolysis of caged Ca2+ in guinea-pig ventricular myocytes and Na+-Ca2+ exchange currents (INa/Ca) were recorded in the whole-cell configuration of the patch-clamp technique. The inhibitory effect of amphiphiles increased with the length of the aliphatic chain between C7 and C10 and was more potent with cationic or anionic head groups than with uncharged head groups. Long-chain cationic amines (C12) exhibited a cut-off in their efficacy in INa/Ca inhibition. Analysis of the time-course, comparison with the Ni2+-induced INa/Ca block and confocal laser scanning microscopy experiments with fluorescent lipid analogs (C6- and C12-NBD-labeled analogs) suggested that amphiphiles need to be incorporated into the membrane. Furthermore, NCX block appears to require transbilayer movement of the amphiphile to the inner leaflet (“flip”). We conclude that both, hydrophobic and electrostatic interactions between the lipids and the NCX may be important factors for the modulation by lipids and could be relevant in cardiac diseases where the lipid metabolism is altered.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

13.
Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.  相似文献   

14.
To date, it has been established that the symbiosome membrane (SM), i.e., plant-derived membrane of symbiosomes, nitrogen-fixing compartments of legume root nodules, is equipped with Ca2+-ATPase transporting Ca2+ ions through the SM from the cytosol of infected cells into the symbiosome space (SS). Earlier in the experiments on the SM vesicles isolated from broad bean root nodules some data indicating the action of the Ca2+-ATPase as ATP-driven Ca2+/H+ antiporter were obtained. In the present work performed on isolated symbiosomes from the same plant object, further evidence in favor of calcium-proton countertransport mechanism of the pump operation was obtained. These were expressed in vanadate-sensitive alkalinization of the SS coupled with Ca2+ uptake by symbiosomes catalyzed by the SM Ca2+-ATPase, stimulation of the kinetics of the latter process in the response to artificial acidification of the SS and expectable modulation of ITP-hydrolyzing activity of this enzyme caused by the variation of pH within this compartment. The above findings are discussed in the framework of the model describing the mechanism of Ca2+-ATPase operation as an ATP-driven Ca2+/H+ exchanger and on this base allow us to put forward the hypothesis about the involvement of this enzyme in symbiosome signaling in a Ca2+- and pH-dependent manner.  相似文献   

15.
16.
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+] i response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+] i responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells. M.-L. Chen and Y.-C. Chen contributed equally to this study  相似文献   

17.
The cell membrane (NCX) and mitochondrial (NCLX) Na+/Ca2+ exchangers control Ca2+ homeostasis. Eleven (out of twelve) ion-coordinating residues are highly conserved among eukaryotic and prokaryotic NCXs, whereas in NCLX, nine (out of twelve) ion-coordinating residues are different. Consequently, NCXs exhibit high selectivity for Na+ and Ca2+, whereas NCLX can exchange Ca2+ with either Na+ or Li+. However, the underlying molecular mechanisms and physiological relevance remain unresolved. Here, we analyzed the NCX_Mj-derived mutant NCLX_Mj (with nine substituted residues) imitating the ion selectivity of NCLX. Site-directed fluorescent labeling and ion flux assays revealed the nearly symmetric accessibility of ions to the extracellular and cytosolic vestibules in NCLX_Mj (Kint?=?0.8–1.4), whereas the extracellular vestibule is predominantly accessible to ions (Kint?=?0.1–0.2) in NCX_Mj. HDX-MS (hydrogen-deuterium exchange mass-spectrometry) identified symmetrically rigidified core helix segments in NCLX_Mj, whereas the matching structural elements are asymmetrically rigidified in NCX_Mj. The HDX-MS analyses of ion-induced conformational changes and the mutational effects on ion fluxes revealed that the “Ca2+-site” (SCa) of NCLX_Mj binds Na+, Li+, or Ca2+, whereas one or more additional Na+/Li+ sites of NCLX_Mj are incompatible with the Na+ sites (Sext and Sint) of NCX_Mj. Thus, the replacement of ion-coordinating residues in NCLX_Mj alters not only the ion selectivity of NCLX_Mj, but also the capacity and affinity for Na+/Li+ (but not for Ca2+) binding, bidirectional ion-accessibility, the response of the ion-exchange to membrane potential changes, and more. These structure-controlled functional features could be relevant for differential contributions of NCX and NCLX to Ca2+ homeostasis in distinct sub-cellular compartments.  相似文献   

18.
Brain hypoxia or ischemia causes acidosis and the intracellular accumulation of Ca2+ in neuron. The aims of the present study were to elucidate the interaction between intracellular pH and Ca2+ during transient acidosis and its effects on the viability of neuronal and glial cells. Intracellular Ca2+ and pH were measured using the fluorescence of fura-2 and 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester in neuroblastoma (IMR-32), glioblastoma (T98G), and astrocytoma (CCF-STTG1) cell lines. The administration of 5 mM propionate caused intracellular acidification in IMR-32 and T98G cells but not in CCF-STTG1 cells. After the removal of propionate, the intracellular pH recovered to the resting level. The intracellular Ca2+ transiently increased upon the removal of propionate in IMR-32 and T98G cells but not in CCF-STTG1 cells. The transient Ca2+ increase caused by the withdrawal of intracellular acidification was abolished by the removal of external Ca2+, diminished by a reduction of external Na+, and inhibited by benzamil. Transient acidosis caused cell death, whereas the cells were more viable in the absence of external Ca2+. Benzamil alleviated cell death caused by transient acidosis in IMR-32 and T98G cells but not in CCF-STTG1 cells. These results suggest that recovery from intracellular acidosis causes a transient increase in cytosolic Ca2+ due to reversal of Ca2+ transport via Na+/Ca2+ exchanger coactivated with Na+/H+ exchanger, which can cause cell death.  相似文献   

19.

Background

Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca2+ release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood.

Results

In the present study we investigated insulin-dependent mitochondrial Ca2+ signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca2+-fluorescent probes we showed that insulin increases mitochondrial Ca2+ levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca2+ uniporter, as well as by siRNA-dependent mitochondrial Ca2+ uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca2+ uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca2+ uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling.

Conclusions

Mitochondrial Ca2+ uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
  相似文献   

20.
The activity of Na+/H+ exchanger to remove toxic Na+ is important for growth of organisms under high salinity. In this study, the halotolerant cyanobacterium Aphanothece halophytica was shown to possess Na+/H+ exchange activity since exogenously added Na+ could dissipate a pre-formed pH gradient, and decrease extracellular pH. Kinetic analysis yielded apparent K m (Na+) and V max of 20.7 ± 3.1 mM and 3,333 ± 370 nmol H+ min−1 mg−1, respectively. For cells grown under salt-stress condition, the apparent K m (Na+) and V max was 18.3 ± 3.5 mM and 3,703 ± 350 nmol H+ min−1 mg−1, respectively. Three cations with decreasing efficiency namely Li+, Ca2+, and K+ were also able to dissipate pH gradient. Only marginal exchange activity was observed for Mg2+. The exchange activity was strongly inhibited by Na+-gradient dissipators, monensin, and sodium ionophore as well as by CCCP, a protonophore. A. halophytica showed high Na+/H+ exchange activity at neutral and alkaline pH up to pH 10. Cells grown at pH 7.6 under high salinity exhibited higher Na+/H+ exchange activity than those grown under low salinity during 15 days of growth suggesting a role of Na+/H+ exchanger for salt tolerance in A. halophytica. Cells grown at alkaline pH of 9.0 also exhibited a progressive increase of Na+/H+ exchange activity during 15 days of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号