首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To perform the vital functions of motility and division, cells must undergo dramatic shifts in cell polarity. Recent evidence suggests that polarized distributions of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, which are clearly important for regulating cell morphology during migration, also play an important role during the final event in cell division, which is cytokinesis. Thus, there is a critical interplay between the membrane phosphoinositides and the cytoskeletal cortex that regulates the complex series of cell shape changes that accompany these two processes.  相似文献   

2.
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.  相似文献   

3.
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.  相似文献   

4.
Sfp1 plays a key role in yeast ribosome biogenesis   总被引:7,自引:0,他引:7  
  相似文献   

5.
Phospholipase D1 plays a key role in TNF-alpha signaling   总被引:1,自引:0,他引:1  
The primary characteristic features of any inflammatory or infectious lesions are immune cell infiltration, cellular proliferation, and the generation of proinflammatory mediators. TNF-alpha is a potent proinflammatory and immuno-regulatory cytokine. Decades of research have been focused on the physiological/pathophysiological events triggered by TNF-alpha. However, the signaling network initiated by TNF-alpha in human leukocytes is still poorly understood. In this study, we report that TNF-alpha activates phospholipase D1 (PLD1), in a dose-dependent manner, and PLD1 is required for the activation of sphingosine kinase and cytosolic calcium signals. PLD1 is also required for NFkappaB and ERK1/2 activation in human monocytic cells. Using antisense oligonucleotides to reduce specifically the expression of PLD isozymes showed PLD1, but not PLD2, to be coupled to TNF-alpha signaling and that PLD1 is required to mediate receptor activation of sphingosine kinase and calcium transients. In addition, the coupling of TNF-alpha to activation of the phosphorylation of ERK1/2 and the activation of NFkappaB were inhibited by pretreating cells with antisense to PLD1, but not to PLD2; thus, demonstrating a specific requirement for PLD1. Furthermore, use of antisense oligonucleotides to reduce expression of PLD1 or PLD2 demonstrated that PLD1 is required for TNF-alpha-induced production of several important cytokines, such as IL-1beta, IL-5, IL-6, and IL-13, in human monocytes. These studies demonstrate the critical role of PLD1 in the intracellular signaling cascades initiated by TNF-alpha and its functional role for coordinating the signals to inflammatory responses.  相似文献   

6.
Results from lineage tracing studies indicate that precursor cells in the ventricles give rise to both cardiac muscle and conduction cells. Cardiac conduction cells are specialized cells responsible for orchestrating the rhythmic contractions of the heart. Here, we show that Notch signaling plays an important role in the differentiation of cardiac muscle and conduction cell lineages in the ventricles. Notch1 expression coincides with a conduction marker, HNK-1, at early stages. Misexpression of constitutively active Notch1 (NIC) in early heart tubes in chick exhibited multiple effects on cardiac cell differentiation. Cells expressing NIC had a significant decrease in expression of cardiac muscle markers, but an increase in expression of conduction cell markers, HNK-1, and SNAP-25. However, the expression of the conduction marker connexin 40 was inhibited. Loss-of-function study, using a dominant-negative form of Suppressor-of-Hairless, further supports that Notch1 signaling is important for the differentiation of these cardiac cell types. Functional studies show that the expression of constitutively active Notch1 resulted in abnormalities in ventricular conduction pathway patterns.  相似文献   

7.
The evidence that nuclear proteins can be degraded by cytosolic proteasomes has received considerable experimental support. However, the presence of proteasome subunits in the nucleus also suggests that protein degradation could occur within this organelle. We determined that Sts1 can target proteasomes to the nucleus and facilitate the degradation of a nuclear protein. Specific sts1 mutants showed reduced nuclear proteasomes at the nonpermissive temperature. In contrast, high expression of Sts1 increased the levels of nuclear proteasomes. Sts1 targets proteasomes to the nucleus by interacting with Srp1, a nuclear import factor that binds nuclear localization signals. Deletion of the NLS in Sts1 prevented its interaction with Srp1 and caused proteasome mislocalization. In agreement with this observation, a mutation in Srp1 that weakened its interaction with Sts1 also reduced nuclear targeting of proteasomes. We reported that Sts1 could suppress growth and proteolytic defects of rad23Δ rpn10Δ. We show here that Sts1 suppresses a previously undetected proteasome localization defect in this mutant. Taken together, these findings explain the suppression of rad23Δ rpn10Δ by Sts1 and suggest that the degradation of nuclear substrates requires efficient proteasome localization.  相似文献   

8.
The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and preventative measures against enteric pathogens.  相似文献   

9.
10.
Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.  相似文献   

11.
12.
Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels.The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation.The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.  相似文献   

13.
Sastre J  Pallardó FV  Viña J 《IUBMB life》2000,49(5):427-435
Harman first suggested in 1972 that mitochondria might be the biological clock in aging, noting that the rate of oxygen consumption should determine the rate of accumulation of mitochondrial damage produced by free radical reactions. Later in 1980 Miquel and coworkers proposed the mitochondrial theory of cell aging. Mitochondria from postmitotic cells use O2 at a high rate, hence releasing oxygen radicals that exceed the cellular antioxidant defences. The key role of mitochondria in cell aging has been outlined by the degeneration induced in cells microinjected with mitochondria isolated from fibroblasts of old rats, especially by the inverse relationship reported between the rate of mitochondrial production of hydroperoxide and the maximum life span of species. An important change in mitochondrial lipid composition is the age-related decrease found in cardiolipin content. The concurrent enhancement of lipid peroxidation and oxidative modification of proteins in mitochondria further increases mutations and oxidative damage to mitochondrial DNA (mtDNA) in the aging process. The respiratory enzymes containing the defective mtDNA-encoded protein subunits may increase the production of reactive oxygen species, which in turn would aggravate the oxidative damage to mitochondria. Moreover, superoxide radicals produced during mitochondrial respiration react with nitric oxide inside mitochondria to yield damaging peroxynitrite. Treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E, or the Ginkgo biloba extract EGb 761, protects against the age-associated oxidative damage to mtDNA and the oxidation of mitochondrial glutathione. Moreover, the EGb 761 extract also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver.  相似文献   

14.
15.
Epr, a minor extracellular protease, is involved in the swarming motility of Bacillus subtilis . It does so by providing essential signals required for swarming. It has also been demonstrated that DegU is required for swarming and that it occurs at very low levels of DegU∼P and is inhibited at high levels of DegU∼P. In this study, we show that maximal epr expression is observed at very low concentrations of DegU∼P, whereas it is repressed at high DegU∼P. A parallel effect of DegU∼P levels on swarming motility is also observed, where very low levels of DegU∼P support swarming and excessive DegU∼P abolishes swarming. We further demonstrate that the defect of swarming motility in a degU strain can be rescued, albeit incompletely, by increased expression of an exogenous epr gene. We also show that an additional extracellular factor(s), apart from epr , regulated by DegU, is required for robust swarming.  相似文献   

16.
17.
18.
19.
Using computer simulation of electrical processes in a GABA-ergic interneuronal network, we found that synchronization of electrical discharges of the neurons is critically dependent on the geometrical size of the virtual network. If the size, under our simulation conditions, was either less than 2.1 mm or greater than 4.2 mm, the network was not able to generate synchronous discharges. Our findings may explain the geometrical size-dependent gamma rhythm generated by neurons of the hippocampal networks. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 264–267, May–June, 2008.  相似文献   

20.
Mononuclear phagocytes play a pivotal role in the progression of septic shock by producing tumor necrosis factor-alpha (TNF-alpha) and other inflammatory mediators in response to lipopolysaccharide (LPS) from Gram-negative bacteria. Our previous studies have shown monocyte and macrophage activation correlate with changes in membrane phospholipid composition, mediated by acyltransferases. Interferon-gamma (IFN-gamma), which activates and primes these cells for enhanced inflammatory responses to LPS, was found to selectively activate lysophosphatidylcholine acyltransferase (LPCAT) (P < 0.05) but not lysophosphatidic acid acyltransferase (LPAAT) activity. When used to prime the human monocytic cell line MonoMac 6, the production of TNF-alpha and interleukin-6 (IL-6) was approximately five times greater in cells primed with IFN-gamma than unprimed cells. Two LPCAT inhibitors SK&F 98625 (diethyl 7-(3,4,5-triphenyl-2-oxo2,3-dihydro-imidazole-1-yl)heptane phosphonate) and YM 50201 (3-hydroxyethyl 5,3'-thiophenyl pyridine) strongly inhibited (up to 90%) TNF-alpha and IL-6 production in response to LPS in both unprimed MonoMac-6 cells and in cells primed with IFN-gamma. In similar experiments, these inhibitors also substantially decreased the response of both primed and unprimed peripheral blood mononuclear cells to LPS. Sequence-based amplification methods showed that SK&F 98625 inhibited TNF-alpha production by decreasing TNF-alpha mRNA levels in MonoMac-6 cells. Taken together, the data from these studies suggest that LPCAT is a key enzyme in both the pathways of activation (priming) and the inflammatory response to LPS in monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号