首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Research was undertaken to clarify the taxonomic identity of leaf rust (Pucciniales) fungi on bioenergy switchgrass in the Eastern and Central U.S. We integrated internal transcribed spacer 2 (ITS2) and partial 28S ribosomal RNA gene sequence data from collections taken from cultivated switchgrass and herbarium specimens, including purported aecial and telial states of Puccinia graminicola and Puccinia pammelii. Maximum likelihood and Bayesian analyses revealed four monophyletic clades: Puccinia emaculata sensu stricto (s.s.), P. pammelii, P. graminicola, and Puccinia novopanici. Results also indicated that P. emaculata s.s. was not affecting cultivated, bioenergy switchgrass. Aecidium pammelii and P. pammelii were distinct phylogenetically from P. emaculata s.s. and grouped within a well-supported clade, demonstrating aecial-telial host alternation for P. pammelii between Euphorbia corollata and switchgrass. Aecidium stillingiae on queen’s delight (Stillingia sylvatica)—a purported aecial state host for P. graminicola—shared identical sequences with the recently described species Puccinia pascua. The latter fungus, however, was recovered within a subclade of P. graminicola. Hence, queen’s delight likely is not an aecial host to P. graminicola s.s. Additional molecular studies are warranted to determine species boundaries within the P. graminicola complex. The majority of contemporary collections from cultivated switchgrass were recognized as P. novopanici. Collectively, bioenergy switchgrass is host to at least three phylogenetically distinct species, presenting a significant challenge to the future selection and breeding of switchgrass with improved rust resistance.  相似文献   

4.

Objectives

To research the inherent properties of the co-expression of three types degumming-related enzymes and breed more powerful degumming strains.

Results

Six tandem multimers of the pectate lyase gene, the xylanase gene, and the endo-1,4-β-mannanase gene, which are essential for degumming process, were co-expressed and evaluated in Escherichia coli BL21(DE3). The xyl91 gene had a synergistic effect with endo-1,4-β-mannanase and pectate lyase from DCE-01, when xyl gene was replaced with xyl91 in the multimer. The recombinant pET-pxm(91x) was selected and transformed into the original degumming strain DCE-01, which led to an enzymatic activity improvement. Furthermore, the weight loss, reducing sugar and COD value of the sample treated with the new engineered strain pET-pxm(91x)/DCE-01 increased to 22.5 %, 460 mg ml?1 and 4.9, respectively.

Conclusions

The co-expression of degumming-related enzyme genes may be applied in industrial tests and represents a novel direction for bio-degumming research.
  相似文献   

5.
6.
7.

Objectives

Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress.

Results

Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g-1 dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain.

Conclusion

The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.
  相似文献   

8.
Rapamycin, as a macrocyclic polyketide with immunosuppressive, antifungal, and anti-tumor activity produced by Streptomyces hygroscopicus, is receiving considerable attention for its significant contribution in medical field. However, the production capacity of the wild strain is very low. Hereby, a computational guided engineering approach was proposed to improve the capability of rapamycin production. First, a genome-scale metabolic model of Streptomyces hygroscopicus ATCC 29253 was constructed based on its annotated genome and biochemical information. The model consists of 1003 reactions, 711 metabolites after manual refinement. Subsequently, several potential genetic targets that likely guaranteed an improved yield of rapamycin were identified by flux balance analysis and minimization of metabolic adjustment algorithm. Furthermore, according to the results of model prediction, target gene pfk (encoding 6-phosphofructokinase) was knocked out, and target genes dahP (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) and rapK (encoding chorismatase) were overexpressed in the parent strain ATCC 29253. The yield of rapamycin increased by 30.8% by knocking out gene pfk and increased by 36.2 and 44.8% by overexpression of rapK and dahP, respectively, compared with parent strain. Finally, the combined effect of the genetic modifications was evaluated. The titer of rapamycin reached 250.8 mg/l by knockout of pfk and co-expression of genes dahP and rapK, corresponding to a 142.3% increase relative to that of the parent strain. The relationship between model prediction and experimental results demonstrates the validity and rationality of this approach for target identification and rapamycin production improvement.  相似文献   

9.

Objectives

To achieve heterologous biosynthesis of dammarenediol-II, which is the precursor of dammarane-type tetracyclic ginsenosides, by reconstituting the 2,3-oxidosqualene-derived triterpenoid biosynthetic pathway in Escherichia coli.

Results

By the strategy of synthetic biology, dammarenediol-II biosynthetic pathway was reconstituted in E. coli by co-expression of squalene synthase (SS), squalene epoxidase (SE), NADPH-cytochrome P450 reductase (CPR) from Saccharomyces cerevisiae, and SE from Methylococcus capsulatus (McSE), NADPH-cytochrome P450 reductase (CPR) from Arabidopsis thaliana. Sequences of transmembrane domains were truncated if necessary in each of the genes. Different sources of SE/CPR combinations were tested, during which two CPRs were detected to be new reductase partners of McSE. When the gene encoding dammarenediol-II synthase was co-expressed with the 2,3-oxidosqualene expression modules, dammarenediol-II was detected and the production was 8.63 mg l?1 in E. coli under the shake-flask conditions.

Conclusions

Two E. coli chassis for production of dammarenediol-II were established which could be potentially applied in other triterpenoid production in E. coli when different oxidosqualene cyclases (OSCs) introduced into the system.
  相似文献   

10.
11.

Background

Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography–mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors.

Results

GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples.

Conclusions

Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl alcohol, and related precursors and products; the accumulation of which suggests altered metabolism of 5-hydroxyconiferyl alcohol in switchgrass. Given that there was no indication that iso-sinapyl alcohol was integrated in cell walls, it is considered a monolignol analog. Diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are together associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth. However, iso-sinapyl alcohol and iso-sinapic acid, added separately to media, were not inhibitory to C. thermocellum cultures.
  相似文献   

12.

Main conclusion

A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant–microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.
  相似文献   

13.
Plant acid invertases are considered to be the key enzymes in sucrose unloading and carbohydrate supply to sink tissues. Acid cell-wall invertases control sucrose transport via the apoplastic pathway during sink initiation and expansion. In this study, we identified 12 LIN7 gene homologs encoding cell-wall invertases in red- and green-fruited tomato accessions (Solanum section Lycopersicon) of self-compatible and self-incompatible species. All genes consisted of six exons and five introns, including highly conserved 9-bp exon II. Identification of 226 exonic single nucleotide polymorphisms as well as extremely high intron variability indicates a significant interspecific divergence among the examined tomato accessions. Computational prediction revealed protein structure typical for the glycosyl hydrolase family 32 and conserved catalytic sites described for other plant cell-wall invertases. LIN7 expression in mature buds and flowers confirms LIN7 role in the development of pollen tubes and grains. The variability in gene and protein sequences and species-specific differences in LIN7 expression patterns may be responsible for putative functional divergence of invertases. Furthermore, we performed phylogenetic analysis of the Solanum section Lycopersicon species based on the LIN7 gene, which clearly divided the analyzed tomato accessions into two main clusters corresponding to self-compatible and self-incompatible species and was in agreement with the separation into red- and green-fruited plants. Given that LIN7 plays an essential role in tomato fertility and fruit ripening, the characterization of protein variability within species of section Lycopersicon may be useful to evaluate the potential application of the encoding genes for tomato breeding programs.  相似文献   

14.
Chicken carcass traits are economically important for the chicken industry. Detecting which genes affect chicken carcass traits is of great benefit to the genetic improvement of this important agricultural species. To investigate the genetic mechanism of carcass traits in chickens, we carried out a genome-wide association study (GWAS). A total of 435 Chinese indigenous chickens were phenotyped for carcass weight (CW), eviscerated weight with giblets (EWG), and eviscerated weight (EW) after slaughter at 91 days and were genotyped using a 600-K single nucleotide polymorphism (SNP) genotyping array. Twenty-four birds were selected for sequencing, and the 600 K SNP panel data were imputed to sequence data with the 24 birds as the reference. Univariate GWASs were performed with GEMMA software using the whole genome sequence data imputed from SNP chip data. Finally, 3, 25, and 63 suggestively significant SNPs were identified to be associated with carcass weight (CW), eviscerated weight with giblets (EWG), and eviscerated weight (EW), respectively. Six candidate genes, RNF219, SCEL, MYCBP2, ETS1, APLP2, and PRDM10 were detected. SCEL and MYCBP2 were potentially associated with these three traits, RNF219 and APLP2 were potentially associated with EWG and EW, and ETS1 and PRDM10 were only potentially associated with EWG and EW, respectively. Compared with forefathers’ research, 10 reported QTLs associated with CW were located within a 5-Mb distance near the SNPs with P value lower than 1×10?5. This study enriched the knowledge of the genetic mechanisms of chicken carcass traits.  相似文献   

15.
16.
17.
18.
S-adenosyl-l-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号